第三次作业

5、给定如表4-9所示的概率模型,求出序列a1a1a3a2a3a1 的实值标签。

由题意可得:

字符集{a1,a2,a3} , 其中p(a1)=0.2 ,p(a2)=0.3  ,p(a3)=0.5

我们可以利用公式确定标签所在的上下限。

利用更新公式,可得:

l(1) =0+(1-0)Fx(0)=0

u(1) =0+(1-0)Fx(1)=0.2 

可得序列a1a1的标签所在的区间为[0,0.2)

该序列的第2个元素为a1,利用更新公式,可得:

l(2) =0+(0.2-0)Fx(0)=0

u(2) =0+(0.2-0)Fx(1)=0.04

可得序列a1a1的标签所在的区间为[0,0.04)

该序列的第3个元素为a3,利用更新公式,可得:

l(3) =0+(0.04-0)Fx(2)=0.02

u(3) =0+(0.04-0)Fx(3)=0.04

可得序列a1a1a3的标签所在的区间为[0.02,0.04)

该序列的第4个元素为a2,利用更新公式,可得:

l(4) =0.02+(0.04-0.02)Fx(1)=0.024

u(4) =0.02+(0.04-0.02)Fx(2)=0.03

可得序列a1a1a3a2的标签所在的区间为[0.024,0.03)

该序列的第5个元素为a3,利用更新公式,可得:

l(5) =0.024+(0.03-0.024)Fx(2)=0.027

u(5) =0.024+(0.03-0.024)Fx(3)=0.03

可得序列a1a1a3a2a3的标签所在的区间为[0.027,0.03)

该序列的第6个元素为a1,利用更新公式,可得:

l(6) =0.027+(0.03-0.027)Fx(0)=0.027

u(6) =0.027+(0.03-0.027)Fx(1)=0.0276

可以生成序列a1a1a3a2a3a1的标签如下:

Tx(a1a1a3a2a3a1)=(0.027+0.0276)/2=0.0273

 

 

 6、对于表4-9所示的概率模型,对于一个标签为0.63215699的长度为10的序列进行解码。

由表4-9可知 Fx(k)=0, k≤0, Fx(1)=0.2, Fx(2)=0.5, Fx(3)=1, k>3.

令l(0)=0, u(0)=1。设玄素对应的序列为x1x2x3x4x5x6x7x8x9x10  ,则利用更新公式

x1

(1)=  l(0)+(u(0)- l(0))*Fx(x1-1)=Fx(x1-1)

u(1)= l(0)+(u(0)- l(0))*Fx(x1)=Fx(x1)

x1=1时,区间为[0,0.2]

x1=2时,区间为[0.2,0.5]

x1=3时,区间为[0.5,1]

因为0.63215699在区间[0.5,1]内,所以,第一个元素的序列为3,元素则为a3

x2

u(2)= l(1)+(u(1)- l(1))*Fx(x2)=0.5+(1-0.5)*Fx(x2)=0.5+0.5Fx(x2)

(2)=l(1)+(u(1)-l(1))*Fx(x2-1)=0.5+(1-0.5)*Fx(x2-1)=0.5+0.5Fx(x2-1)

x2=1时,区间为[0.5,0.6]

x2=2时,则该区间为[0.6,0.75]

x2=3时,则该区间为[0.75,1]

因为 0.63215699在区间[0.6,0.75]内,所以,第二个元素的序列为2,元素则为a2

x3

u(3)= l(2)+(u(2)- l(2))*Fx(x3)=0.6+(0.75-0.6)*Fx(x2)=0.6+0.15Fx(x3)

(3)=  l(2)+(u(2)- l(2))*Fx(x3-1)=0.6+(0.75-0.6)*Fx(x2-1)=0.6+0.15Fx(x3-1)

 x3=1时,区间为[0.6,0.63]

 x3=2时,区间为[0.63,0.675]

 x3=3时,区间为[0.675,0.75]

因为0.63215699在区间[0.63,0.675]内,所以,第三个元素的序列为2,元素则为a2

x4

u(4)=l(3)+(u(3)-l(3))*Fx(x4)=0.63+(0.675-0.63)*Fx(x4)=0.63+0.045*Fx(x4)

(4)=l(3)+(u(3)-l(3))*Fx(x4-1)=0.63+(0.675-0.63)*Fx(x4-1)=0.63+0.045*Fx(x4-1)

 x4=1时,区间为[0.63,0.639]

 x4=2时,区间为[0.639,0.6525]

 x4=3时,区间为[0.6525,0.675]

因为0.63215699在区间[0.63,0.639]内,所以,第四个元素的序列为1,元素则为a1

x5

u(5)=l(4)+(u(4)-l(4))*Fx(x5)=0.63+(0.639-0.63)*Fx(x5)=0.63+0.009*Fx(x5)

(5)=l(4)+(u(4)-l(4))*Fx(x5-1)=0.63+(0.639-0.63)*Fx(x5-1)=0.63+0.009*Fx(x5-1)

x5=1时,区间为[0.63,0.6318]

 x5=2时,区间为[0.6318,0.6345]

 x5=3时,区间为[0.6345,0.639]

因为0.63215699在区间[0.6318,0.6345]内,所以,第五个元素的序列为2,元素则为a2

x6

u(6)=l(5)+(u(5)-l(5))*Fx(x6)=0.6318+(0.6345-0.6318)*Fx(x6)=0.6318+0.0027*Fx(x6)

(6)=l(5)+(u(5)-l(5))*Fx(x6-1)=0.6318+(0.6345-0.6318)*Fx(x6-1)=0.6318+0.0027*Fx(x6-1)

x6=1,则该区间为[0.6318,0.63234]

x6=2,则该区间为[0.63234,0.63315]

x6=3,则该区间为[0.63315,0.6345]

因为0.63215699在区间[0.6318,0.63234]内,所以,第六个元素的序列为1,元素则为a1

x7

u(7)=l(6)+(u(6)-l(6))*Fx(x7)=0.6318+(0.63234-0.6318)*Fx(x7)=0.6318+0.00054*Fx(x7)

(7)=l(6)+(u(6)-l(6))*Fx(x7-1)=0.6318+(0.63234-0.6318)*Fx(x7-1)=0.6318+0.00054*Fx(x7-1)

x7=1,则该区间为[0.6318,0.631908]

x7=2,则该区间为[0.631908,0.63207]

x7=3,则该区间为[0.63207,0.63234]

因为 0.63215699在区间[0.63207,0.63234],所以,第七个元素的序列为3,元素则为a3

x8

u(8)=l(7)+(u(7)-l(7))*Fx(x8)=0.63207+(0.63234-0.63207)*Fx(x8)=0.63207+0.00027*Fx(x8)

(8)=l(7)+(u(7)-l(7))*Fx(x8-1)=0.63207+(0.63234-0.63207)*Fx(x8-1)=0.63207+0.00027*Fx(x8-1)

x8=1时,区间为[0.63207,0.632124]

x8=2时,区间为[0.632124,0.632205]

x8=3时,区间为[0.632205,0.63234]

因为0.63215699在区间[0.632124,0.632205]内,所以,第八个元素的序列为2,元素则为a2

x9

u(9)=l(8)+(u(8)-l(8))*Fx(x9)=0.632124+(0.632205-0.632124)*Fx(x9)=0.632124+(8.1e-5)*Fx(x9)

(9)=l(8)+(u(8)-l(8))*Fx(x9-1)=0.632124+(0.632205-0.632124)*Fx(x9-1)=0.632124+(8.1e-5)*Fx(x9-1)

x9=1时,区间为[0.632124,0.6321402]

x9=2时,区间为[0.0.6321402,0.6321645]

 x9=3时,区间为[0.6321645,0.63234]

因为0.63215699在区间[0.6321402,0.6321645]内,所以,第九个元素的序列为2,元素则为a2

x10

u(10)=l(9)+(u(9)-l(9))*Fx(x10)=0.6321402+(0.6321645-0.6321402)*Fx(x10)=0.6321402+(2.43e-5)*Fx(x10)

(10)=l(9)+(u(9)-l(9))*Fx(x10-1)=0.6321402+(0.6321645-0.6321402)*Fx(x10-1)=0.6321402+(2.43e-5)*Fx(x10-1)

x10=1时,区间为[0.6321402,0.63212886]

x10=2时,区间为[0.63212886,0.63215325]

x10=3时,区间为[0.63215325,0.6321645]

因为0.63215699在区间[0.63215235,0.6321645]内,所以,第九个元素的序列为3,元素则为a3

所以根据表4-9所给的概率模型得出标签为0.63215699的长度为10的序列的解码结果为:a3 a2 aa1 a2  a1 a3 a2 a2 a3

posted on 2015-09-29 20:28  刘存俊  阅读(133)  评论(0编辑  收藏  举报

导航