实验1-波士顿房价预测

VMware虚拟机 Ubuntu20-LTS

python3.6

tensorflow1.15.0

keras2.3.1

运行截图

 代码:

复制代码
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
import joblib
from sklearn.metrics import r2_score
from sklearn.neural_network import MLPRegressor

import pandas as pd
import numpy as np

lb = load_boston()
x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.2)


# 为数据增加一个维度,相当于把[1, 5, 10] 变成 [[1, 5, 10],]
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)

# 进行标准化
std_x = StandardScaler()
x_train = std_x.fit_transform(x_train)
x_test = std_x.transform(x_test)

std_y = StandardScaler()
y_train = std_y.fit_transform(y_train)
y_test = std_y.transform(y_test)

#%%
# 正规方程预测
lr = LinearRegression()
lr.fit(x_train, y_train)
print("r2 score of Linear regression is",r2_score(y_test,lr.predict(x_test)))
#岭回归
from sklearn.linear_model import RidgeCV

cv = RidgeCV(alphas=np.logspace(-3, 2, 100))
cv.fit (x_train , y_train)
print("r2 score of Linear regression is",r2_score(y_test,cv.predict(x_test)))
#梯度下降
sgd = SGDRegressor()
sgd.fit(x_train, y_train)
print("r2 score of Linear regression is",r2_score(y_test,sgd.predict(x_test)))
from keras.models import Sequential
from keras.layers import Dense

#基准NN
#使用标准化后的数据
seq = Sequential()
#构建神经网络模型
#input_dim来隐含的指定输入数据shape
seq.add(Dense(64, activation='relu',input_dim=lb.data.shape[1]))
seq.add(Dense(64, activation='relu'))
seq.add(Dense(1, activation='relu'))
seq.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
seq.fit(x_train, y_train,  epochs=300, batch_size = 16, shuffle = False)
score = seq.evaluate(x_test, y_test,batch_size=16) #loss value & metrics values
print("score:",score)
print('r2 score:',r2_score(y_test, seq.predict(x_test)))
复制代码

 

posted @   lcz111  阅读(23)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
点击右上角即可分享
微信分享提示