暑假总结2

Hadoop Distributed File System,Hadoop 分布式文件系统,简称 HDFS。

HDFS 用于在集群中储存文件,它所使用的核心思想是 Google 的 GFS 思想,可以存储很大的文件。

在服务器集群中,文件存储往往被要求高效而稳定,HDFS同时实现了这两个优点。

HDFS 高效的存储是通过计算机集群独立处理请求实现的。因为用户 (一半是后端程序) 在发出数据存储请求时,往往响应服务器正在处理其他请求,这是导致服务效率缓慢的主要原因。但如果响应服务器直接分配一个数据服务器给用户,然后用户直接与数据服务器交互,效率会快很多。

数据存储的稳定性往往通过"多存几份"的方式实现,HDFS 也使用了这种方式。HDFS 的存储单位是块 (Block) ,一个文件可能会被分为多个块储存在物理存储器中。因此 HDFS 往往会按照设定者的要求把数据块复制 n 份并存储在不同的数据节点 (储存数据的服务器) 上,如果一个数据节点发生故障数据也不会丢失。

命名节点 (NameNode) 是用于指挥其它节点存储的节点。任何一个"文件系统"(File System, FS) 都需要具备根据文件路径映射到文件的功能,命名节点就是用于储存这些映射信息并提供映射服务的计算机,在整个 HDFS 系统中扮演"管理员"的角色,因此一个 HDFS 集群中只有一个命名节点。

数据节点 (DataNode) 使用来储存数据块的节点。当一个文件被命名节点承认并分块之后将会被储存到被分配的数据节点中去。数据节点具有储存数据、读写数据的功能,其中存储的数据块比较类似于硬盘中的"扇区"概念,是 HDFS 存储的基本单位。

posted @   lcz111  阅读(7)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
历史上的今天:
2022-07-23 4
点击右上角即可分享
微信分享提示