SPPnet

首先做一个补充:
在RCNN中CNN阶段的流程大致如下:

这种裁剪和畸变看着很不爽不利于训练

SPP创新点

一张图图片会有~2k个候选框,每一个都要单独输入CNN做卷积等操作很费时。SPP-net提出:能否在feature map上提取ROI特征,这样就只需要在整幅图像上做一次卷积。

这样实现一次卷积
虽然总体流程还是 Selective Search得到候选区域->CNN提取ROI特征->类别判断->位置精修,但是由于所有ROI的特征直接在feature map上提取,大大减少了卷积操作,提高了效率。

有两个难点要解决:

  1. 原始图像的ROI如何映射到特征图(一系列卷积层的最后输出(feature map))
  2. ROI的在特征图上的对应的特征区域的维度不满足全连接层的输入要求怎么办(又不可能像在原始ROI图像上那样进行截取和缩放)?
    (这两个问题确实蛮重要的)

空间金字塔池化

对于难点2我们分析一下:
这个问题涉及的流程主要有: 图像输入->卷积层1->池化1->...->卷积层n->池化n->全连接层。
引发问题的原因主要有:全连接层的输入维度是固定死的,导致池化n的输出必须与之匹配,继而导致图像输入的尺寸必须固定。

继而有两种解决办法:

1、想办法让不同尺寸的图像也可以使 池化n 产生固定的 输出维度。(打破图像输入的固定性)
2、想办法让全连接层(罪魁祸首)可以接受非固定的输入维度。(打破全连接层的固定性,继而 也打破了图像输入的固定性)

方法1:正是SPPnet的思想,在池化上做了一些手脚(空间金字塔池化),使得不同尺寸的图像经过池化后可以产生固定的维度。
假设原图输入是224x224,对于conv5出来后的输出是13x13x256的,可以理解成有256个这样的filter,每个filter对应一张13x13的reponse map。如果像上图那样将reponse map分成1x1(金字塔底座),2x2(金字塔中间),4x4(金字塔顶座)三张子图,分别做max pooling后,出来的特征就是(16+4+1)x256 维度。如果原图的输入不是224x224,出来的特征依然是(16+4+1)x256维度。这样就实现了不管图像尺寸如何 池化n 的输出永远是 (16+4+1)x256 维度。
实际运用中只需要根据全连接层的输入维度要求设计好空间金字塔即可。(清楚明白)
池化示意图
方法2:其实就是全连接转换为全卷积,作用的效果等效为在原始图像做滑窗,多个窗口并行处理。

映射关系

image.png
       使用SPP进行检测,先用提候选proposals方法(selective search)选出候选框,不过不像RCNN把每个候选区域给深度网络提特征,而是整张图提一次特征,再把候选框映射到conv5上,因为候选框的大小尺度不同,映射到conv5后仍不同,所以需要再通过SPP层提取到相同维度的特征,再进行分类和回归,后面的思路和方法与RCNN一致。
      实际上这样子做的话就比原先的快很多了,因为之前RCNN也提出了这个原因就是深度网络所需要的感受野是非常大的,这样子的话需要每次将感兴趣区域放大到网络的尺度才能卷积到conv5层。这样计算量就会很大,而SPP只需要计算一次特征,剩下的只需要在conv5层上操作就可以了。

抛砖

      当然即使是这么完美的算法,也是有它的瑕疵的,可能Kaiming He大神太投入 SPP的功效了,使得整个流程框架并没有变得更加完美。首先在训练方面,SPP没有发挥出它的优势,依旧用了传统的训练方法,这使得计算量依旧很大,而且分类和bounding box的回归问题也可以联合学习,使得整体框架更加完美。这些Kaiming He都给忽略了,这样也就有了第二篇神作 Fast RCNN。

posted @ 2019-10-10 08:05  博博的Blog  阅读(301)  评论(0编辑  收藏  举报