数据分析06 /pandas高级操作相关案例:人口案例分析、2012美国大选献金项目数据分析

数据分析06 /pandas高级操作相关案例:人口案例分析、2012美国大选献金项目数据分析

1. 人口分析案例

  • 需求:

    1. 导入文件,查看原始数据
    2. 将人口数据和各州简称数据进行合并
    3. 将合并的数据中重复的abbreviation列进行删除
    4. 查看存在缺失数据的列
    5. 找到有哪些state/region使得state的值为NaN,进行去重操作
    6. 为找到的这些state/region的state项补上正确的值,从而去除掉state这一列的所有NaN
    7. 合并各州面积数据areas
    8. 我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行
    9. 去除含有缺失数据的行
    10. 找出2010年的全民人口数据
    11. 计算各州的人口密度
    12. 排序,并找出人口密度最高的五个州
  • 代码实现:

    1.导入文件,查看原始数据

    import pandas as pd
    
    # 各州的全称和简称
    abb = pd.read_csv('./data/state-abbrevs.csv')
    abb.head()
    

    # 各州人口数据
    pop = pd.read_csv('./data/state-population.csv')
    pop.head()
    

    # 各州面积数据
    area = pd.read_csv('./data/state-areas.csv')
    area.head()
    

    2.将人口数据和各州简称数据进行合并

    abb_pop = pd.merge(abb,pop,left_on='abbreviation',right_on='state/region',how='outer') # how指定称outer,可以保证数据的完整性
    abb_pop.head()
    

    3.将合并的数据中重复的abbreviation列进行删除

    abb_pop.drop(labels='abbreviation',axis=1,inplace=True) 
    abb_pop.head()
    

    4.查看存在缺失数据的列

    # 方式一:
    abb_pop.info()
    

    # 方式二:
    abb_pop.isnull().any(axis=0)
    

    5.找到有哪些state/region使得state的值为NaN,进行去重操作

    # 找出全称(state)的空值
    abb_pop['state'].isnull()
      
    # 找出空值对应的行数据(行数据中就有符合条件的简称)
    abb_pop.loc[abb_pop['state'].isnull()]
      
    # 在空所对应的行数据中取出简称(找到了空对应的简称)
    abb_pop.loc[abb_pop['state'].isnull()]['state/region']
      
    # 去重
    abb_pop.loc[abb_pop['state'].isnull()]['state/region'].unique()
      
    # nunique()统计去重之后结果的个数,n-> num
    abb_pop.loc[abb_pop['state'].isnull()]['state/region'].nunique()  
    

    6.为找到的这些state/region的state项补上正确的值,从而去除掉state这一列的所有NaN

    思路:将state列中的空值都取出来,然后将其分成两组(PR对应的空值,USA对应的空)

    # 根据PR去state中定位空值
    abb_pop['state/region'] == 'PR'
    # 将PR对应的行数据取出,从行数据中定位空值,定位到的空值就是PR对应的空,空值赋值PR的全程
    abb_pop.loc[abb_pop['state/region'] == 'PR']
      
    # 将PR对应的state的空值的行索引获取
    indexs = abb_pop.loc[abb_pop['state/region'] == 'PR'].index
    indexs
      
    # 将indexs对应行中的state列的数据批量赋值成PR的全称
    abb_pop.loc[indexs,'state'] = 'Puerto Rico'
    
    # 将USA对应的全称的空值覆盖称United Status
    abb_pop['state/region'] == 'USA'
    abb_pop.loc[abb_pop['state/region'] == 'USA']
    indexs = abb_pop.loc[abb_pop['state/region'] == 'USA'].index
    abb_pop.loc[indexs,'state'] = 'United Status'
    

    7.合并各州面积数据areas

    abb_pop_area = pd.merge(abb_pop,area,on='state',how='outer')
    abb_pop_area.head()
    

    8.我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行

    abb_pop_area['area (sq. mi)'].isnull()   # 判断area(sq. mi)列中存在的空值有哪些true
    abb_pop_area.loc[abb_pop_area['area (sq. mi)'].isnull()]  # 将area(sq. mi)的空值对应的行数据取出
    

    9.去除含有缺失数据的行

    drop_index = abb_pop_area.loc[abb_pop_area['area (sq. mi)'].isnull()].index  # 获取行索引
    abb_pop_area.drop(labels=drop_index,axis=0,inplace=True)   # 根据行索引进行行数据的删除
    

    10.找出2010年的全民人口数据,基于df进行条件查询

    abb_pop_area.query('ages == "total" & year == 2010')
    

    11.计算各州的人口密度

    abb_pop_area['midu'] = abb_pop_area['population'] / abb_pop_area['area (sq. mi)']
    abb_pop_area.head()
    

    12.排序,并找出人口密度最高的五个州,sort_values根据值排序

    abb_pop_area.sort_values(by='midu',ascending=False)
    
    # ascending表示是升序还是降序
    

  • 人口分析案例总结:

    1. 读取文件:pd.read_csv('文件路径')

    2. 查看每一列的详细信息:data.info()

    3. df的条件查询:data.query('ages == "total" & year == 2010')

    4. 对某一列数据进行排序:data.sort_values(by='midu',ascending=False)

2. 2012美国大选献金项目数据分析

  • 需求:

    1. 加载数据,查看数据的基本信息

    2. 指定数据截取,将如下字段的数据进行提取,其他数据舍弃

      cand_nm :候选人姓名

      contbr_nm : 捐赠人姓名

      contbr_st :捐赠人所在州

      contbr_employer : 捐赠人所在公司

      contbr_occupation : 捐赠人职业

      contb_receipt_amt :捐赠数额(美元)

      contb_receipt_dt : 捐款的日期

    3. 对新数据进行总览df.info(),查看是否存在缺失数据

    4. 用统计学指标快速描述数值型属性的概要。df.describe()

    5. 空值处理。可能因为忘记填写或者保密等等原因,相关字段出现了空值,将其填充为NOT PROVIDE

    6. 异常值处理。将捐款金额<=0的数据删除

    7. 新建一列为各个候选人所在党派party

    8. 查看party这一列中有哪些不同的元素

    9. 统计party列中各个元素出现次数

    10. 查看各个党派收到的政治献金总数contb_receipt_amt

    11. 查看具体每天各个党派收到的政治献金总数contb_receipt_amt

    12. 将表中日期格式转换为'yyyy-mm-dd'

    13. 查看老兵(捐献者职业)DISABLED VETERAN主要支持谁

    14. 找出各个候选人的捐赠者中,捐赠金额最大的人的职业以及捐献额

  • 代码实现:

    1.加载数据,查看数据的基本信息

    df = pd.read_csv('./data/usa_election.txt')
    df.head()
    

    2.指定数据截取,将如下字段的数据进行提取,其他数据舍弃

    df = df[['cand_nm','contbr_nm','contbr_st','contbr_employer','contbr_occupation','contb_receipt_amt','contb_receipt_dt']]
    

    3.对新数据进行总览df.info(),查看是否存在缺失数据

    df.info()
    
    数据总览如下:
    """
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 536041 entries, 0 to 536040
    Data columns (total 7 columns):
    cand_nm              536041 non-null object
    contbr_nm            536041 non-null object
    contbr_st            536040 non-null object
    contbr_employer      525088 non-null object
    contbr_occupation    530520 non-null object
    contb_receipt_amt    536041 non-null float64
    contb_receipt_dt     536041 non-null object
    dtypes: float64(1), object(6)
    memory usage: 28.6+ MB
    """
    

    5.用统计学指标快速描述数值型属性的概要。df.describe()

    df.describe()
    

    5.空值处理。可能因为忘记填写或者保密等等原因,相关字段出现了空值,将其填充为NOT PROVIDE

    # 使用NOT PROVIDE对空值进行填充
    df.fillna(value='NOT PROVIDE',inplace=True)
    
    # 重新查看列是否有空值
    df.info()
    
    数据总览如下:
    """
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 536041 entries, 0 to 536040
    Data columns (total 7 columns):
    cand_nm              536041 non-null object
    contbr_nm            536041 non-null object
    contbr_st            536041 non-null object
    contbr_employer      536041 non-null object
    contbr_occupation    536041 non-null object
    contb_receipt_amt    536041 non-null float64
    contb_receipt_dt     536041 non-null object
    dtypes: float64(1), object(6)
    memory usage: 28.6+ MB
    """
    

    6.异常值处理。将捐款金额<=0的数据删除

    df = df.loc[~(df['contb_receipt_amt'] <= 0)]
    

    7.新建一列为各个候选人所在党派party

    # 不同候选人党派对应表
    parties = {
      'Bachmann, Michelle': 'Republican',
      'Romney, Mitt': 'Republican',
      'Obama, Barack': 'Democrat',
      "Roemer, Charles E. 'Buddy' III": 'Reform',
      'Pawlenty, Timothy': 'Republican',
      'Johnson, Gary Earl': 'Libertarian',
      'Paul, Ron': 'Republican',
      'Santorum, Rick': 'Republican',
      'Cain, Herman': 'Republican',
      'Gingrich, Newt': 'Republican',
      'McCotter, Thaddeus G': 'Republican',
      'Huntsman, Jon': 'Republican',
      'Perry, Rick': 'Republican'           
     }
    
    # 先查看共有多少个不同的候选人
    df['cand_nm'].unique()
    
    # 查看候选人的个数
    df['cand_nm'].nunique()
    
    # 利用映射为每个候选人添加党派信息
    df['party'] = df['cand_nm'].map(parties)
    df.head()
    

    8.查看party这一列中有哪些不同的元素

    df['party'].unique()
    

    9.统计party列中各个元素出现次数

    df['party'].value_counts()  # value_counts()统计Series中不同元素出现的次数
    

    10.查看各个党派收到的政治献金总数contb_receipt_amt

    # 应用分组
    df.groupby(by='party')['contb_receipt_amt'].sum()
    

    11.查看具体每天各个党派收到的政治献金总数contb_receipt_amt

    df.groupby(by=['contb_receipt_dt','party'])['contb_receipt_amt'].sum()
    

    12.将表中日期格式转换为'yyyy-mm-dd'

    # 应用运算工具
    def transform_date(d):
        day,month,year = d.split('-')
        month = months[month]
        return '20'+year+'-'+str(month)+'-'+day
    
    df['contb_receipt_dt'] = df['contb_receipt_dt'].map(transform_date)
    df.head()
    

    13.查看老兵(捐献者职业)DISABLED VETERAN主要支持谁

    # 1.取出老兵这个职业对应的行数据
    old_bing_df = df.loc[df['contbr_occupation'] == 'DISABLED VETERAN']
    
    # 2.根据竞选者分组
    old_bing_df.groupby(by='cand_nm')['contb_receipt_amt'].sum()
    

    14.找出各个候选人的捐赠者中,捐赠金额最大的人的职业以及捐献额

    df.groupby(by='cand_nm')['contb_receipt_amt'].max()
    
    # 此方法有不能满足要求,待更新
    
  • 2012美国大选献金项目数据分析案例总结:

    1. 用统计学指标快速描述数值型属性的概要:df.describe()
    2. 统计Series中不同元素出现的次数:Series_obj.value_counts()
posted @ 2019-12-13 22:05  LBZHK  阅读(470)  评论(0编辑  收藏  举报