强化学习 Q-learning 及python实现

Q-learning是强化学习中一种经典的无监督学习方法,通过与环境交互来指导学习;

大部分强化学习都是基于马尔科夫决策(MDP)的。MDP是一个框架,而Q学习是应用了这种框架的一个具体的学习方法。

 

Q学习的四要素:(agent,状态 s,动作 a,奖励 r)

简而言之,agent从当前状态选择一个动作,转移至一个新的状态,这个过程会获得一个即时奖励 r,agent再据此更新动作值函数Q,并将Q值储存在Q表中。

这里关键的有一个即时奖励矩阵R,和一个存储动作值函数值的Q表;两个表都是二维,行表示状态,列表示动作;

 

Q学习中的Q值更新函数(其实基于MDP中的值函数):

 

α:学习速率; γ:折扣因子 ,表示对未来奖励的重视程度;

不过我个人而言,常用α=1的情况,因为α的值对于算法对比和优化的效果差别不大(在迭代次数足够多的情况下);

 

一下这个小例子用的是动态规划的方法迭代计算Q,因为模型已知;模型未知的情况常采用蒙特卡洛算法 & 时序差分算法(TD,常用)

简单的一个迷宫例子就是这个走迷宫了~从任意状态开始,走到房间5就算成功了~

  

 

python实现Q学习走迷宫:

 1 # an example for maze using qlearning, two dimension
 2 import numpy as np
 3 
 4 # reward matrix R
 5 R = np.array([[-1, -1, -1, -1, 0, -1], [-1, -1, -1, 0, -1, 100],
 6      [-1, -1, -1, 0, -1, -1], [-1, 0, 0, -1, 0, -1],
 7      [0, -1, -1, 0, -1, 100], [-1, 0, -1, -1, 0, 100]])
 8 
 9 Q = np.zeros((6, 6), float)
10 gamma = 0.8    # discount factor
11 
12 episode = 0
13 while episode < 1000:
14      state = np.random.randint(0, 6)    # from a random start state
15      for action in range(6):
16           if R[state, action] > -1:
17                Q[state, action] = R[state, action] + gamma*max(Q[action])  # this time, action is the next state
18      episode = episode + 1
19 
20 print(Q)

 

posted @ 2020-10-19 14:20  liubilan  阅读(1619)  评论(0编辑  收藏  举报