BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块
问题描述
积性函数
若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\),则称 \(f(x)\) 为积性函数。
狄利克雷卷积和莫比乌斯函数
今天 zzk 神仙讲了一下狄利克雷卷积、数论分块和莫比乌斯反演。
几个数论函数
以上这几个数论函数都是积性函数。
狄利克雷卷积
有函数 \(f(x),g(x)\) , 若有函数 \(h(x)=\sum\limits_{d|x}{f(d)g(\frac{x}{d})}\) ,则称 \(h(x)\) 是 \(f(x),g(x)\) 的卷积。
记作 \(h(x)=f(x)*g(x)\)
狄利克雷卷积有如下性质:
-
交换律,即 \(f*g=g*f\)
-
结合律,即 \((a*b)*c=a*(b*c)\)
-
若 \(f,g\) 都是积性函数,则 \(f*g\) 也是积性函数,即 \(f*g(mn)=f*g(m) \times f*g(n)((n,m)=1)\)
单位元 \(\varepsilon\)
若 \(f*g = \varepsilon\) ,则 \(f\) 与 \(g\) 互为逆
莫比乌斯函数
\(\mu(x)\)代表莫比乌斯函数。
对 \(x\) 应有质数唯一分解定理,将 \(x\) 表示为 \(x=\prod_{i=1}^{k} p_i^{c_i}\) ,则有
莫比乌斯函数是一个积性函数,即对于满足 \((x,y)=1\) 的 \(x,y\) ,有 \(\mu(xy)=\mu(x) \times \mu(y)\)
有重要性质 \(\sum\limits_{d|x}{\mu(d)}=\varepsilon=\begin{cases}0&x \neq 1\\1&x=1\end{cases}\)
莫比乌斯反演
套式子:
用狄利克雷卷积来解释,就是 \(f=g*1,g=f*\mu\)
数论分块
简单问题
数论分块一般的问题是求 \(\sum_{d=1}^n{\lfloor \frac{n}{d} \rfloor}\)
考虑分块思想,把 \(\lfloor \frac{n}{d} \rfloor\) 数值相同的划分为一块求。
于是可以得到以下代码:
稍复杂问题 \(1\)
题解
题意是要求 \(\sum\limits_{i=a}^{b}{\sum\limits_{j=c}^{d}{[(i,j)==k]}}\)
显然可以通过差分,将问题转化为求 \(\sum\limits_{i=1}^{n}{\sum\limits_{j=1}^{m}{[(i,j)==k]}}\)
可以通过在两边同时除去 \(k\) ,得到
考虑最大公约数为 \(1\) 的要求,可以想到 \([(i,j)==1]\) 的条件可以直接改为 \(\varepsilon((i,j))\)
又因为 \(\varepsilon((i,j))=\sum\limits_{d|(i,j)}{\mu(d)}\) ,所以式子转化为
对 \(\sum\) 进行变换,得到
\(\mathrm{Code}\)
#include<bits/stdc++.h>
using namespace std;
const int maxn=50000;
int T;
void Init(void){
scanf("%d",&T);
}
int p[maxn+7],pr[maxn+7],miu[maxn+7],s[maxn+7];
int tot;
void preprocess(){
miu[1]=1;
for(int i=2;i<=maxn;i++){
if(!p[i]) p[i]=i,pr[++tot]=i,miu[i]=-1;
for(int j=1;j<=tot;j++){
if(i*pr[j]>maxn||p[i]<pr[j]) break;
p[i*pr[j]]=pr[j];
if(i%pr[j]) miu[i*pr[j]]=-miu[i];
else miu[i*pr[j]]=0;
}
}
for(int i=1;i<=maxn;i++) s[i]=s[i-1]+miu[i];
}
int calc(int x,int y){
if(x>y) swap(x,y);
if(x==0||y==0) return 0;
int res(0);
for(int l=1,r;l<=x;l=r+1){
r=min(x/(x/l),y/(y/l));
res+=(s[r]-s[l-1])*(x/l)*(y/l);
}
return res;
}
void Work(void){
preprocess();
while(T--){
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
--a,--c;
printf("%d\n",calc(b/k,d/k)+calc(a/k,c/k)-calc(a/k,d/k)-calc(b/k,c/k));
}
}
int main(){
Init();
Work();
return 0;
}