LG2602/BZOJ1833 「ZJOI2010」数字计数 数位DP

问题描述

LG2602

BZOJ1833


题解

数位\(\mathrm{DP}\)板子题。

注意限制位数、前导零。

\([a,b]=[1,b]-[1,a-1]\)


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std;

#define int long long

template <typename Tp>
void read(Tp &x){
	x=0;char ch=1;int fh;
	while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
	if(ch=='-'){
		fh=-1;ch=getchar();
	}
	else fh=1;
	while(ch>='0'&&ch<='9'){
		x=(x<<1)+(x<<3)+ch-'0';
		ch=getchar();
	}
	x*=fh;
}

int a,b;
int len;
int opt[21][3][21][3];
int lim[21];
void count(int x){
	len=0;
	while(x){
		lim[++len]=x%10,x/=10;
	}
}

int dp(int siz,bool lit,int base,bool pre,int pos){
	int re=0;
	if(!siz) return base;
	if(opt[siz][lit][base][pre]!=-1) return opt[siz][lit][base][pre];
	for(int i=0;i<=9;i++){
		if(!lit&&i>lim[siz]) break;
		re=re+dp(siz-1,lit||(i<lim[siz]),base+((!pre||i)&&(i==pos)),pre&&(!i),pos);
	}
	return opt[siz][lit][base][pre]=re;
}

int solve(int x,int pos){
	count(x);
	memset(opt,-1,sizeof(opt));
	return dp(len,0,0,1,pos);
}

signed main(){
	read(a);read(b);
	for(int i=0;i<=9;i++){
		printf("%lld ",solve(b,i)-solve(a-1,i));
	}
	return 0;
}
posted @ 2019-09-16 23:26  览遍千秋  阅读(188)  评论(0编辑  收藏  举报