浅谈 负载均衡

初次接触负载均衡的概念,还是得益于Nginx的使用,后来又陆续接触了调度算法。为了实现系统的资源合理分配,网站资源的高速响应,负载均衡是必须要考虑的事情。

顺便说一下,负载均衡不仅仅是一个算法,或者一个工具,更是一种思想,它来源于《方法论》,它是一种方法,不仅可以应用于系统开发中,也可以用于项目管理中。例如一个任务分成两个部分,能力强的人多干活,能力弱的人少干点活,这样两个人的进度不会相差很多,各自做好手头的活,就可以合并成一体了。

一、负载均衡的概念

Load balancing,即负载均衡,是一种计算机技术,用来在多个计算机(计算机集群)、网络连接、CPU、磁盘驱动器或其他资源中分配负载,以达到最优化资源使用、最大化吞吐率、最小化响应时间、同时避免过载的目的。

二、负载均衡的由来

我们在日常生活中经常免不了要去一些比较拥挤的地方,比如地铁站、火车站、电影院、银行等。无论是买票,还是排队入场,这些场所一般都会设置多个服务点或者入口的。如果没有人引导的话,大多数情况下,最近的入口会挤满人。而哪些距离较远的服务点或者入口就宽松很多。

 这种情况下,就会大大浪费资源,因为如果可以把这些排队的人很好的分散到各个入口的话会大大缩短排队时间。其实,网站的建设也是一样的。为了提升网站的服务能力,很多网站采用集群部署,就像话剧院有多个入口一样。这时候,就需要一个协调者,来均衡的分配这些用户的请求,可以让用户的可以均匀的分派到不同的服务器上。

 为了提升网站的各方面能力,我们一般会把多台机器组成一个集群对外提供服务。然而,我们的网站对外提供的访问入口都是一个的,比如www.taobao.com。那么当用户在浏览器输入www.taobao.com的时候如何将用户的请求分发到集群中不同的机器上呢,这就是负载均衡在做的事情。

负载均衡(Load Balance),意思是将负载(工作任务,访问请求)进行平衡、分摊到多个操作单元(服务器,组件)上进行执行。是解决高性能,单点故障(高可用),扩展性(水平伸缩)的终极解决方案。

大部分时刻,我们都是用Nginx去做了负载均衡的事情。

 

三、负载均衡分类

3.1、OSI简介

OSI是一个开放性的通信系统互连参考模型,他是一个定义得非常好的协议规范。

OSI模型有7层结构,每层都可以有几个子层。 OSI的7层从上到下分别是 7、应用层;6、表示层;5、会话层;4、传输层;3、网络层;2、数据链路层;1、物理层;

其中高层(即7、6、5、4层)定义了应用程序的功能,下面3层(即3、2、1层)主要面向通过网络的端到端的数据流。

在这七层模型种,高层次都是依赖于低层次的。层次越高,使用起来越方便。

 

计算机网络有关的概念:

TELNET、HTTP、FTP、NFS、SMTP、DNS等属于第七层应用层的概念。

TCP、UDP、SPX等属于第四层传输层的概念。

IP、IPX等属于第三层网络层的概念。

ATM、FDDI等属于第二层数据链路层的概念。

了解了网络协议的七层模型以后,再来看看负载均衡。我们可以很明确的一点是,负载均衡是要在网络传输中做文章的。而要在网络传输过程搞事情,那么这七层模型就势必躲不开。

所以,根据负载均衡技术实现在OSI七层模型的不同层次,是可以给负载均衡分类的。

常见的实现方式中,主要可以在应用层、传输层、网络层和数据传输层做文章。所以,工作在应用层的负载均衡,我们通常称之为七层负载均衡、工作在传输层的我们称之为四层负载均衡。

大致可以分为以下几种,其中最常用的是四层和七层负载均衡:

二层负载均衡 

负载均衡服务器对外依然提供一个VIP(虚IP),集群中不同的机器采用相同IP地址,但是机器的MAC地址不一样。当负载均衡服务器接受到请求之后,通过改写报文的目标MAC地址的方式将请求转发到目标机器实现负载均衡。

三层负载均衡

和二层负载均衡类似,负载均衡服务器对外依然提供一个VIP(虚IP),但是集群中不同的机器采用不同的IP地址。当负载均衡服务器接受到请求之后,根据不同的负载均衡算法,通过IP将请求转发至不同的真实服务器。

四层负载均衡 

四层负载均衡工作在OSI模型的传输层,由于在传输层,只有TCP/UDP协议,这两种协议中除了包含源IP、目标IP以外,还包含源端口号及目的端口号。四层负载均衡服务器在接受到客户端请求后,以后通过修改数据包的地址信息(IP+端口号)将流量转发到应用服务器。

七层负载均衡 

七层负载均衡工作在OSI模型的应用层,应用层协议较多,常用http、radius、dns等。七层负载就可以基于这些协议来负载。这些应用层协议中会包含很多有意义的内容。比如同一个Web服务器的负载均衡,除了根据IP加端口进行负载外,还可根据七层的URL、浏览器类别、语言来决定是否要进行负载均衡。 

3.2、负载均衡工具

市面上有很多开源的负载均衡的工具或软件,基本都是基于前面提到的方案实现的,大多数是工作在第七层和第四层的。Nginx/LVS/HAProxy是目前使用最广泛的三种负载均衡软件。

LVS :LVS主要用来做四层负载均衡

LVS(Linux Virtual Server),也就是Linux虚拟服务器, 是一个由章文嵩博士发起的自由软件项目。使用LVS技术要达到的目标是:通过LVS提供的负载均衡技术和Linux操作系统实现一个高性能、高可用的服务器群集,它具有良好可靠性、可扩展性和可操作性。从而以低廉的成本实现最优的服务性能。

Nginx :Nginx主要用来做七层负载均衡

Nginx(发音同engine x)是一个网页服务器,它能反向代理HTTP, HTTPS, SMTP, POP3, IMAP的协议链接,以及一个负载均衡器和一个HTTP缓存。

HAProxy :HAProxy主要用来做七层负载均衡

HAProxy是一个使用C语言编写的自由及开放源代码软件,其提供高可用性、负载均衡,以及基于TCP和HTTP的应用程序代理。

四、负载均衡算法

负载均衡服务器在决定将请求转发到具体哪台真实服务器的时候,是通过负载均衡算法来实现的。负载均衡算法,是一个负载均衡服务器的核心。

就像电影院门口的引导员一样,他根据什么把排队人员分配到具体的入口呢?是哪个入口人少吗?还是哪个入口速度最快?还是哪个入口最近呢?

负载均衡算法可以分为两类:静态负载均衡算法和动态负载均衡算法。

1).静态负载均衡算法包括:轮询,比率,优先权

  轮询(Round Robin):顺序循环将请求一次顺序循环地连接每个服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从顺序循环队列中拿出,不参加下一次的轮询,直到其恢复正常。      

1.轮询调度(Round-Robin,RR)
   最简单的调度算法,LB按照顺序将请求依次转发给后端的RS,并没有考量后端RS的状态(处理速度以及响应时间)。大部分情况下,RS的性能状态都是各不一致的,这种算法显然无法满足合理利用资源的要求。

2.带权重的轮询调度(Weighted Round-Robin,WRR)
   在轮询算法的基础上加上权重设置,权重越高的RS被分配到的请求越多。适用于按照服务器性能高低,配置不同的权重,以达到合理的资源利用。

  比率(Ratio):给每个服务器分配一个加权值为比例,根椐这个比例,把用户的请求分配到每个服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配, 直到其恢复正常。

  优先权(Priority):给所有服务器分组,给每个组定义优先权,BIG-IP 用户的请求,分配给优先级最高的服务器组(在同一组内,采用轮询或比率算法,分配用户的请求);当最高优先级中所有服务器出现故障,BIG-IP 才将请求送给次优先级的服务器组。这种方式,实际为用户提供一种热备份的方式。

  哈希(Hash):给所有服务器分 根据请求IP地址的负载均衡调度,通过一个散列(hash)函数将一个目标IP地址映射到一台服务器。刚开始接触nginx,我就想这么干,但是有一个致命的缺点,要是目标服务器下线了,请求还是会持续不断的发送到该服务端,业务不可用

1.目标地址散列调度(Destination Hashing, DH)
也是针对请求报文目标IP地址的负载均衡调度,但它是一种静态映射算法,通过一个散列(hash)函数将一个目标IP地址映射到一台服务器。DH算法先根据请求的目标IP地址,作为散列键(hash key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且为超载,将请求发送到该服务器,否则返回空。

2.源地址散列调度(Source Hashing, SH)
该算法正好与DH调度算法相反,它根据请求的源IP地址,作为散列键从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。算法流程与目标地址散列调度算法基本相似,只不过将请求的目标IP地址换成请求的源IP地址。

 

2).动态负载均衡算法包括: 最少连接数,最快响应速度,观察方法,预测法,动态性能分配,动态服务器补充,服务质量,服务类型,规则模式。

  最少的连接方式(Least Connection):传递新的连接给那些进行最少连接处理的服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配, 直到其恢复正常。

1.最小连接调度(Least-Connection, LC)
把新的请求分配给连接数最少的RS。连接数少说明服务器空闲。

2.带权重的最小连接调度(Weight Least-Connection, WLC)
在最小连接算法的基础上加上权重设置,这样可以人为地控制请求分配。

3.基于局部性的最小连接调度(Locality-Based Least Connection, LBLC)
针对请求报文目标IP地址的负载均衡调度。目前主要用于Cache集群系统,因为在Cache集群中客户请求报文的目标IP地址是变化的。
算法的设计目标是在服务器的负载基本平衡情况下,将相同目标IP地址的请求调度到同一台服务器,来提高各台服务器的访问局部性和主存Cache命中率,提升整个集群系统的处理能力。
LBLC调度算法先根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器是可用的且没有超载,将请求发送到该服务器;若服务器不存在,或者该服务器超载且有服务器处于其一半的工作负载,则用“最小连接”的原则选出一个可用的服务器,将请求发送到该服务器。

4.带复制的基于局部性最小连接调度(Locality-Based Least Connections with Replication, LBLCR)
也是针对请求报文目标IP地址的负载均衡调度,与LBLC算法不同之处:LBLC维护一个目标IP到一台服务器的映射,而LBLCR则需要维护一个目标IP到一组服务器的映射。
LBLCR调度算法先根据请求的目标IP地址找到对应的服务器组,按“最小连接”原则从该服务器组中选出一台服务器,若服务器没有超载,则将请求发送到该服务器;若服务器超载,则按“最小连接”原则从整个集群中选出一台服务器,将该服务器加入到服务组中,将请求发送给这台服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的程度。

  最快模式(Fastest):传递连接给那些响应最快的服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

  观察模式(Observed):连接数目和响应时间以这两项的最佳平衡为依据为新的请求选择服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

  预测模式(Predictive):BIG-IP利用收集到的服务器当前的性能指标,进行预测分析,选择一台服务器在下一个时间片内,其性能将达到最佳的服务器相应用户的请求。(被BIG-IP 进行检测)

  动态性能分配(Dynamic Ratio-APM):BIG-IP 收集到的应用程序和应用服务器的各项性能参数,动态调整流量分配。

  动态服务器补充(Dynamic Server Act.):当主服务器群中因故障导致数量减少时,动态地将备份服务器补充至主服务器群。

  服务质量(QoS):按不同的优先级对数据流进行分配。

  服务类型(ToS):按不同的服务类型(在Type of Field中标识)负载均衡对数据流进行分配。

  规则模式:针对不同的数据流设置导向规则,用户可自行。

以上,就是目前实现负载均衡的主流算法。不同的负载均衡服务器会选择不同的算法。就像电影院和火车站可能会选用不同的引导策略一样。火车站可能会把行李少的旅客分配到一个专门的入口,可能给即将发车的旅客分派到特快入口,手持可扫描车票的用户单独分配到特殊入口等。

 

posted @ 2020-12-20 17:54  杨兮臣  阅读(256)  评论(0编辑  收藏  举报