Pytorch分布式训练,其他GPU进程占用GPU0的原因
问题
最近跑师兄21年的论文代码,代码里使用了Pytorch分布式训练,在单机8卡的情况下,运行代码,出现如下问题。
也就是说GPU(1..7)上的进程占用了GPU0,这导致GPU0占的显存太多,以至于我的batchsize不能和原论文保持一致。
解决方法
我一点一点进行debug。
首先,在数据加载部分,由于没有将local_rank
和world_size
传入get_cifar_iter
函数,导致后续使用DALI创建pipeline时使用了默认的local_rank=0
,因此会在GPU0上多出该GPU下的进程
其次,在使用torch.load
加载模型权重时,没有设置map_location
,于是会默认加载到GPU0上,下图我选择将模型权重加载到cpu。虽然,这会使训练速度变慢,但为了和论文的batchsize保持一致也不得不这样做了。-.-
参考文献
分类:
Bugs
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!