[Locked] Range Sum Query 2D - Mutable
Range Sum Query 2D - Mutable
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [ [3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5] ] sumRegion(2, 1, 4, 3) -> 8 update(3, 2, 2) sumRegion(2, 1, 4, 3) -> 10
Note:
- The matrix is only modifiable by the update function.
- You may assume the number of calls to update and sumRegion function is distributed evenly.
- You may assume that row1 ≤ row2 and col1 ≤ col2.
分析:
如果不考虑第二个条件,即update和sumRegion分布均匀,则该题有三种情况。
1. update少,sumRegion多,则关键简化sumRegion步骤。
对于sumRegion,使用(0, 0)到(i, j)的矩阵和作为基本存储元素sum[i][j],利用矩阵的重叠关系,有sum[m ~ n][p ~ q] = sum[n][q] - sum[n][p - 1] - sum[m - 1][q] + sum[m - 1][p - 1]。复杂度为O(1)。
对于update,需要更新所有的sum[i][j]。复杂度为O(MN),M,N为矩阵长宽。
2. update多,sumRegion少,则关键简化update步骤。
对于update,更新当前位置即可。复杂度为O(1)。
对于sumRegion,一个元素一个元素地累加。复杂度为O(MN)。
3. update多,sumRegion多,需要折衷方案。
对于sumRegion,既不一个个加,也不矩阵加减,而是一行行加。复杂度为O(M)。
对于update,需要计算一行行的(row, 0)到(row, j)的值rowsum[row][j]。复杂度为O(N)。
对于3,其实可以用线段树降到log复杂度。
代码:
class Solution { private: vector<vector<int> > rowsum; public: Solution(vector<vector<int> > matrix) { for(auto row : matrix) { vector<int> srs(1, 0); int count = 0; for(int val : row) srs.push_back(count += val); rowsum.push_back(srs); } } int sumRegion(int row1, int col1, int row2, int col2) { int sum = 0; for(int i = row1; i <= row2; i++) sum += rowsum[i][col2 + 1] - rowsum[i][col1]; return sum; } void update(int row, int col, int val) { int diff = val - (rowsum[row][col + 1] - rowsum[row][col]); for(int j = col + 1; j < rowsum[0].size(); j++) rowsum[row][j] += diff; return; } };