[Locked] Flip Game I & II

Flip Game I

You are playing the following Flip Game with your friend: Given a string that contains only these two characters:+and -, you and your friend take turns to flip two consecutive "++" into "--". The game ends when a person can no longer make a move and therefore the other person will be the winner.

Write a function to compute all possible states of the string after one valid move.

For example, given s = "++++", after one move, it may become one of the following states:

[
  "--++",
  "+--+",
  "++--"
]

If there is no valid move, return an empty list [].

分析:

  一层处理即可

代码:

vector<string> flipGame(string str) {
    vector<string> vs;
    for(int i = 0; i < str.length() - 1; i++) {
        if(str[i] == '+' && str[i + 1] == '+') {
            str[i] = str[i + 1] = '-';
            vs.push_back(str);
            str[i] = str[i + 1] = '+';
        }
    }
    return vs;
}

 

Flip Game II

You are playing the following Flip Game with your friend: Given a string that contains only these two characters: + and -, you and your friend take turns to flip two consecutive "++" into "--". The game ends when a person can no longer make a move and therefore the other person will be the winner.

Write a function to determine if the starting player can guarantee a win.

For example, given s = "++++", return true. The starting player can guarantee a win by flipping the middle "++" to become "+--+".

Follow up:
Derive your algorithm's runtime complexity.

分析:

  第一想法是找到合适的规律,可以直接从当前状态判断是否必胜,经过尝试,难以直接判断;所以采用一般解法,当两边都是没有失误的高手状态下,有以下规律:

    1、终结点是必败点(P点);

    2、从任何必胜点(N点)操作,至少有一种方法可以进入必败点(P点)

    3、无论如何操作, 从必败点(P点)都只能进入必胜点(N点).

  这里用到的就是1,2,3规律,对手无点可操作,则以失败终结;自己必胜,则至少一种方法进入下一轮必败点;若不能必胜,则找不到方法进入下一轮必败点;若自己必败,则无论用什么方法下一轮都是必胜点。

代码:

bool canwin(string str) {
    for(int i = 0; i < str.length() - 1; i++) {
        if(str[i] == '+' && str[i + 1] == '+') {
            str[i] = str[i + 1] = '-';
            int win = !canwin(str);
            str[i] = str[i + 1] = '+';
            if(win)
                return true;
        }
    }
    return false;
}

 

posted @ 2016-02-19 11:05  CarlGoodman  阅读(166)  评论(0编辑  收藏  举报