P1253 扶苏的问题
扶苏的问题
一、题目描述
给定一个长度为 的序列 ,要求支持如下三个操作:
- 给定区间 ,将区间内每个数都修改为 。
- 给定区间 ,将区间内每个数都加上 。
- 给定区间 ,求区间内的最大值。
输入格式
第一行是两个整数,依次表示序列的长度 和操作的个数 。
第二行有 个整数,第 个整数表示序列中的第 个数 。
接下来 行,每行表示一个操作。每行首先有一个整数 ,表示操作的类型。
- 若 ,则接下来有三个整数 ,表示将区间 内的每个数都修改为 。
- 若 ,则接下来有三个整数 ,表示将区间 内的每个数都加上 。
- 若 ,则接下来有两个整数 ,表示查询区间 内的最大值。
输出格式
对于每个 的操作,输出一行一个整数表示答案。
样例输入 #1
6 6
1 1 4 5 1 4
1 1 2 6
2 3 4 2
3 1 4
3 2 3
1 1 6 -1
3 1 6
样例输出 #1
7
6
-1
样例输入 #2
4 4
10 4 -3 -7
1 1 3 0
2 3 4 -4
1 2 4 -9
3 1 4
样例输出 #2
0
数据规模与约定
- 对于 的数据,。
- 对于 的数据,。
- 对于 的数据,。
- 对于 的数据,。
- 对于 的数据,。
- 对于 的数据,,,,。
提示
请注意大量数据读入对程序效率造成的影响。
二、线段树解法
-
1.其实就是用线段树进行简单的区间修改(每个数修改为, 每个数加)和 区间查询。因为有两种区间修改,所以用和两个懒标记;
-
2.两个操作之间的关系:每次一个区间若修改为,那么区间的就要清空为。每次下传标记先下传区间的再下传;
-
3.维护区间最大值;
-
4.改变整个区间每个值为之后还是得要下传操作,因为有一部分区间可能不会被这样更新,
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n, m;
int a[N];
// 线段树模板
#define int long long
#define INF 0x3f3f3f3f
#define ls u << 1
#define rs u << 1 | 1
struct Node {
int l, r;
int modify, add; // 两个懒标记:区间内统一修改为v,区间内统一加上v
int mx; // 区间最大值,结果
} tr[N << 2];
void pushup(int u) {
tr[u].mx = max(tr[ls].mx, tr[rs].mx);
}
void build(int u, int l, int r) {
tr[u].l = l, tr[u].r = r; // 范围
tr[u].modify = INF; // 更新懒标记INF,更新懒标记INF
tr[u].add = 0; // 更新懒标记INF,加法懒标记0
/*
Q1:为什么modify的懒标记要设置为INF,而不是0呢?
答:因为如果设置为0,我们就不知道到底是想整体区间都修改为0,还是默认值!我们分不清!
同时,由于modify的值域是abs(x)=1e9,也就是可能是0,也可能是-1e9,所以,我们只能选择找一个范围外的数字做为初始值,
才能区分开是默认值,还是人为修改值。
Q2: 为什么add懒标记可以设置为初始化是0呢?
答:因为对于加法而言,加零还是不加零是没有区别的,所以,人为区间加,是不会加零的。
Q: 为什么这个对于懒标记的初始化,是在build这个递归函数的入口处就进行呢的?而对于叶子节点的赋值是在l==r的判断里?
答:我们需要头脑中有线段树的整体架构,在每个统计区间(也可以理解为每个统计点),都是有两个懒标记:整体修改标记modify
和整体加法标记add的,懒标记可不是作用到叶子上的,而是作用在统计节点上的!所以,对于每个需要分裂的区间,当然都需要对
懒标记进行赋值了。
*/
if (l == r) {
tr[u].mx = a[l]; // 单节点时,区间最大值,准备通过pushup函数,向上汇总统计信息
return;
}
int mid = (l + r) >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
pushup(u);
}
void pushdown(int u) {
// 注意:要先处理统一修改的modify懒标记,再处理add标记!
if (tr[u].modify != INF) { // 如果存在modify的懒标记
tr[ls].modify = tr[rs].modify = tr[u].modify; // 向左右儿子传递统一修改的懒标记
tr[ls].mx = tr[rs].mx = tr[u].modify; // 统一修改后,都是一样的值,那么左右儿子的最大值当然也是这个值
tr[ls].add = tr[rs].add = 0; // 本来想向下传递加法的懒标记,这样好了,不用传递了,因为新来的要求把整体都修改成modify了
tr[u].modify = INF; // modify懒标记都传递下去,处理完了,设置为默认值吧
}
if (tr[u].add) { // 如果存在add的懒标记
tr[ls].add += tr[u].add; // 左儿子的add懒标记加上新的增加出来的add
tr[rs].add += tr[u].add; // 右儿子的add懒标记加上新的增加出来的add
tr[ls].mx += tr[u].add; // 左儿子的最大值加上add
tr[rs].mx += tr[u].add; // 右儿子的最大值加上add
tr[u].add = 0; // add懒标记传递完毕
}
}
void modify(int u, int l, int r, int v) {
if (l <= tr[u].l && r >= tr[u].r) { // 完全覆盖
tr[u].mx = v; // 区间所有值修改为v,当然最大值也是v
tr[u].modify = v; // 全部修改为v,懒标记修改为v, 不向下继续传递
tr[u].add = 0; // 整体都修改为v了,以前不管有啥add懒标记,其实都没用了,因为人家要统一修改为v
return;
}
pushdown(u); // 懒标记下传时,不一定是一个懒标记,所以,不要在这里通过if进行判断决定是否进行pushdown,而是在pushdown内部完成懒标记的判定
// 找交集
// 方法1
if (l <= tr[ls].r) modify(ls, l, r, v); // 左儿子的右大于等于l,表示左儿子与修改区间有交集
if (r >= tr[rs].l) modify(rs, l, r, v); // 右儿子的左小于等于r,表示右儿子与修改区间有交集
// 方法2
// int mid = (tr[u].l + tr[u].r) >> 1;
// if (l <= mid) modify(ls, l, r, v);
// if (r > mid) modify(rs, l, r, v);
// 修改完毕,需要向上汇总统计信息
pushup(u);
}
void add(int u, int l, int r, int v) { // 加v
if (l <= tr[u].l && r >= tr[u].r) { // 完全覆盖
tr[u].mx += v; // 每个人都+v,最大值肯定也要+v
tr[u].add += v; // 修改整体的加法懒标记
// Q:为什么不修改modify懒标记呢?
// 答:当add执行时,需要把前面的都整明白后再进行add。那么,如果原来有modify的动作,就先modify,再add, 否则计算就不正确了
return;
}
pushdown(u);
// 找交集
// 方法1
if (l <= tr[ls].r) add(ls, l, r, v); // 左儿子的右大于等于l,表示左儿子与修改区间有交集
if (r >= tr[rs].l) add(rs, l, r, v); // 右儿子的左小于等于r,表示右儿子与修改区间有交集
// 方法2
// int mid = (tr[u].l + tr[u].r) >> 1;
// if (l <= mid) add(ls, l, r, v);
// if (r > mid) add(rs, l, r, v);
// 修改完毕,需要向上汇总统计信息
pushup(u);
}
int query(int u, int l, int r) {
if (l <= tr[u].l && r >= tr[u].r) return tr[u].mx;
pushdown(u);
// 方法1
if (r < tr[rs].l) return query(ls, l, r);
if (l > tr[ls].r) return query(rs, l, r);
return max(query(ls, l, r), query(rs, l, r));
// 方法2
// int mid = (tr[u].l + tr[u].r) >> 1;
// int res = -1e16;
// if (l <= mid) res = max(res, query(ls, l, r));
// if (r > mid) res = max(res, query(rs, l, r));
// return res;
}
/*
答案:
7
6
-1
*/
signed main() {
#ifndef ONLINE_JUDGE
freopen("P1253.in", "r", stdin);
#endif
// 加快读入
ios::sync_with_stdio(false), cin.tie(0);
cin >> n >> m;
for (int i = 1; i <= n; i++) cin >> a[i];
build(1, 1, n);
while (m--) {
int op;
int l, r, x;
cin >> op;
if (op == 1) {
cin >> l >> r >> x;
modify(1, l, r, x);
} else if (op == 2) {
cin >> l >> r >> x;
add(1, l, r, x);
} else {
cin >> l >> r;
printf("%lld\n", query(1, l, r));
}
}
return 0;
}
三、柯朵莉树解法(非正解)
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
#define int long long // 不开LONG LONG见祖宗
int n, m;
// TLE 掉最后的两个测试点
// 柯朵莉树模板
// 不要采用构建函数与{}混搭的使用,WA的让你怀疑人生!
// 以后记住:在声明结构体时,不要使用构造函数!!
struct Node {
int l, r; // l和r表示这一段的起点和终点
mutable int v; // v表示这一段上所有元素相同的值是多少,注意关键字 mutable,使得set中结构体属性可修改
bool operator<(const Node &b) const {
return l < b.l; // 规定按照每段的左端点排序
}
};
set<Node> s; // 柯朵莉树的区间集合
// 分裂:[l,x-1],[x,r]
set<Node>::iterator split(int x) {
auto it = s.lower_bound({x});
if (it != s.end() && it->l == x) return it; // 一击命中
it--; // 没有找到就减1个继续找
if (it->r < x) return s.end(); // 真的没找到,返回s.end()
int l = it->l, r = it->r, v = it->v; // 没有被返回,说明找到了,记录下来,防止后面删除时被破坏
s.erase(it); // 删除整个区间
s.insert({l, x - 1, v}); //[l,x-1]拆分
// insert函数返回pair,其中的first是新插入结点的迭代器
return s.insert({x, r, v}).first; //[x,r]拆分
}
// 区间加
void add(int l, int r, int v) {
// 必须先计算itr,后计算itl
auto R = split(r + 1), L = split(l);
for (auto it = L; it != R; it++) it->v += v;
}
// 区间赋值
void assign(int l, int r, int v) {
auto R = split(r + 1), L = split(l);
s.erase(L, R); // 删除旧区间
s.insert({l, r, v}); // 增加新区间
}
int query(int l, int r) {
int res = -LONG_LONG_MAX; // 这个最小值太BT了,需要写成这么小!
auto R = split(r + 1), L = split(l);
for (; L != R; L++) res = max(res, L->v);
return res;
}
/*
答案:
7
6
-1
*/
signed main() {
#ifndef ONLINE_JUDGE
freopen("P1253.in", "r", stdin);
#endif
// 加快读入
ios::sync_with_stdio(false), cin.tie(0);
// 柯朵莉初始化
cin >> n >> m;
for (int i = 1; i <= n; i++) {
int x;
cin >> x;
s.insert({i, i, x}); // ① 需要初始化多个独立的区间
}
while (m--) {
int op;
int l, r, x;
cin >> op;
cin >> l >> r;
if (op == 1) {
cin >> x;
assign(l, r, x); // ②平推
} else if (op == 2) {
cin >> x;
add(l, r, x); // ③区间内都加上x
} else
printf("%lld\n", query(l, r)); // ④查询
}
return 0;
}
分类:
线段树
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!
2019-08-29 CentOS Linux更改MySQL数据库目录位置
2018-08-29 黄海下一步要完成的工作
2018-08-29 视频H265格式压缩,软件压缩方法,硬件的没有条件,没法测试。
2018-08-29 Centos下的IO监控与分析
2018-08-29 查看进程运行时间长度
2017-08-29 赤峰项目Nginx进程异常的处理办法