HDU 3333 Turing Tree [线段树(树状数组)+离线操作+数字去重求区间和]
\(HDU\) \(3333\) \(Turing\) \(Tree\)
一、题目大意
给定长度为 \(n\) 的数组以及 \(q\) 次询问,每次询问给出一对 \(l、r\),输出 \([l, r]\) 区间上所有互不相同的元素的总和
二、解题思路
问题是怎么处理那些 相同的数
我们可以一个个的修改树状数组 (或者 线段树),边修改,边求值,如果修改的位置刚好是询问的右边界,那就修改后,马上求值,有两种策略
- ① 对问题进行排序,右区间小的先询问
- ② 不需要进行排序,直接枚举右端点 【推荐】
用\(HASH\)表记录上一次相同数出现的地方
现在分两种情况:
- 一个是,该数之前没有出现过,那就直接修改树状数组,并记录该数所在的位置
- 另一个是,该数在之前出现过了,那就先将之前的那个数去掉(数组有记录位置),然后再放入该数,再修改该数出现位置,这样就不会出现重复计算的情况了
因为询问的右边界已经确定了,所以肯定会包含当前数的。
询问的区间有可能包含两个相同的数,也有可能只包含一个,考虑如果包含两个的情况,因为我们将前面那个去掉了,所以求得的结果就不会重复加上同一个数了,如果只包含一个的情况,那么包含的数肯定是当前出现的那个。所以去掉前面的数,并不会对后面的求解造成影响
三、树状数组解法
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <unordered_map>
#include <vector>
using namespace std;
const int N = 1e5 + 10;
typedef long long LL;
typedef pair<int, int> PII;
int n, m;
LL a[N];
LL ans[N];
// 树状数组模板
LL c[N];
#define lowbit(x) (x & -x)
void add(int x, LL d) {
for (int i = x; i <= n; i += lowbit(i)) c[i] += d;
}
LL query(int x) {
LL res = 0;
for (int i = x; i; i -= lowbit(i)) res += c[i];
return res;
}
int main() {
// 加快读入
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int T;
cin >> T;
while (T--) {
unordered_map<int, int> b;
vector<PII> q[N]; // 这是一个二维数组,单元格中是PII
memset(ans, 0, sizeof ans);
memset(c, 0, sizeof c);
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
cin >> m;
for (int i = 1; i <= m; i++) {
int l, r;
cin >> l >> r;
q[r].push_back({l, i}); // 以r结尾的有一个查询:{id=i,l}
}
for (int i = 1; i <= n; i++) {
if (b.count(a[i])) add(b[a[i]], -a[i]);
b[a[i]] = i;
add(i, a[i]);
// 枚举以i为结尾的所有查询
for (auto c : q[i]) ans[c.second] = query(i) - query(c.first - 1);
}
// 输出
for (int i = 1; i <= m; i++) printf("%lld\n", ans[i]);
}
return 0;
}
四、线段树解法
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <unordered_map>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 30010, M = 100010;
typedef pair<int, int> PII;
// 线段树结构体
struct Node {
int l, r;
LL sum; // 区间和
} tr[N << 2];
int n, m; // n个数字的原始数列,m次询问
int a[N]; // 原始数组
LL ans[M]; // 问题答案
void pushup(int u) {
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void build(int u, int l, int r) {
tr[u] = {l, r};
int mid = (l + r) >> 1;
if (l == r) return;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u); // 套路,其实本题不需要pushup
}
void modify(int u, int x, int v) {
if (tr[u].l == tr[u].r) {
tr[u].sum += v;
return;
}
int mid = (tr[u].l + tr[u].r) >> 1;
if (x <= mid) modify(u << 1, x, v);
if (x > mid) modify(u << 1 | 1, x, v);
pushup(u);
}
LL query(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
LL ans = 0;
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid) ans += query(u << 1, l, r);
if (r >= mid + 1) ans += query(u << 1 | 1, l, r);
return ans;
}
int main() {
// 加快读入
ios::sync_with_stdio(false), cin.tie(0);
int T;
cin >> T;
while (T--) {
unordered_map<int, int> b;
vector<PII> q[N]; // 这是一个二维数组,单元格中是PII
memset(ans, 0, sizeof ans);
memset(tr, 0, sizeof tr);
cin >> n;
// 构建线段树
build(1, 1, n);
for (int i = 1; i <= n; i++) cin >> a[i];
cin >> m;
for (int i = 1; i <= m; i++) {
int l, r;
cin >> l >> r;
q[r].push_back({l, i}); // 以r结尾的有一个查询:{l,id=i}
}
// 图灵树
// ① 核心:一边构建,一边查询
// ② 理解:为配合动态构建,需要以当前的进度节点为右边界进行查询,这导致了前面以右边界为索引保存PII信息
for (int i = 1; i <= n; i++) {
// 根据值,利用HASH表,找出此值原来的位置
// 如果有相同值出现,则旧位置上减去a[i],然后更新HASH,在新位置上+a[i]
if (b.count(a[i])) modify(1, b[a[i]], -a[i]);
b[a[i]] = i; // 值->号
modify(1, i, a[i]);
// 枚举以i为右端点的查询
for (auto c : q[i]) ans[c.second] = query(1, c.first, i);
}
// 输出
for (int i = 1; i <= m; i++) printf("%lld\n", ans[i]);
}
return 0;
}
五、右端点排序思路
其实,与上面未排序的思想是一样的,人家上面的不排序,本质上还是按右端点排序的来的,因为它是从小到大枚举每个端点,发现当前枚举到的端点是某个查询的右边界时,开始查询,此时,它查询的都是合法的区间,后续的修改不会对其造成查询错误。
#include <iostream>
#include <unordered_map>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const int N = 30010, M = 100010;
/*
图灵树的来历原来是这个。。经典的线段树离线所有查询右端点排序的题目吧。。
所有询问右端点排序后,从小到大扫过去,线段树维护序列区间和,用一个map记录各个数最右边出现的位置,
一遇到一个数就把之前位置消除并更新当前位置,相当于把各个数尽量向右移动。。
*/
struct Node {
int l, r;
LL sum;
} tr[N << 2];
struct Question {
int l, r, id;
const bool operator<(const Question &t) const {
return r < t.r;
}
} q[M];
int n, m;
int a[N];
LL ans[M];
void pushup(int u) {
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void build(int u, int l, int r) {
tr[u] = {l, r};
int mid = (l + r) >> 1;
if (l == r) return;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
}
void modify(int u, int x, int d) {
if (tr[u].l == tr[u].r) {
tr[u].sum += (LL)d;
return;
}
int mid = (tr[u].l + tr[u].r) >> 1;
if (x <= mid) modify(u << 1, x, d);
if (x > mid) modify(u << 1 | 1, x, d);
pushup(u);
}
LL query(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
LL ans = 0;
int mid = (tr[u].l + tr[u].r) >> 1;
if (l <= mid) ans += query(u << 1, l, r);
if (r >= mid + 1) ans += query(u << 1 | 1, l, r);
return ans;
}
int main() {
// 加快读入
ios::sync_with_stdio(false), cin.tie(0);
int T;
cin >> T;
while (T--) {
unordered_map<int, int> b;
memset(ans, 0, sizeof ans);
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
cin >> m;
for (int i = 1; i <= m; i++) {
cin >> q[i].l >> q[i].r;
q[i].id = i;
}
// 按右端点排序
sort(q + 1, q + 1 + m);
// 构建线段树
build(1, 1, n);
for (int i = 1, j = 1; i <= m; i++) { // i枚举每个查询,j枚举的是原始数组数据
while (j <= q[i].r) { // 在空间内的逐个进入,并不断修改最后的值
if (b.count(a[j])) modify(1, b[a[j]], -a[j]);
modify(1, j, a[j]);
b[a[j]] = j++;
}
ans[q[i].id] = query(1, q[i].l, q[i].r);
}
for (int i = 1; i <= m; i++) printf("%lld\n", ans[i]);
}
return 0;
}