AcWing 7. 混合背包问题

\(AcWing\) \(7\). 混合背包问题

一、题目描述

\(n\) 种物品和一个 容量 为 \(m\) 的背包

物品分三类:

  1. 第一类物品只能用 \(1\) 次(\(01\)背包)
  2. 第二类物品可以用无限次(完全背包)
  3. 第三类物品最多只能用\(s_i\)次(多重背包)

每种体积是 \(v_i\),价值是 \(w_i\)
求解一个选物品的方案,是的物品 总体积 不超过背包的 容量,且 总价值最大

输入格式
第一行两个整数,\(N,V\),用空格隔开,分别表示物品种数和背包容积。

接下来有 \(N\) 行,每行三个整数 \(v_i,w_i,s_i\),用空格隔开,分别表示第 \(i\) 种物品的体积、价值和数量。

\(s_i=−1\) 表示第 \(i\) 种物品只能用\(1\)次;

\(s_i=0\) 表示第 \(i\) 种物品可以用无限次;

\(s_i>0\) 表示第 \(i\) 种物品可以使用 \(s_i\)次;

输出格式
输出一个整数,表示最大价值。

数据范围
\(0<N,V≤1000,0<v_i,w_i≤1000\)
\(−1≤s_i≤1000\)

输入样例

4 5
1 2 -1
2 4 1
3 4 0
4 5 2

输出样例

8

二、试题分析

该题就是一道 混合背包 的裸题

  • \(01\)背包看成是数量只有\(1\)个的多重背包问题。
  • 完全背包也不是真正的无限个数,因为受背包容量的限制,它最多可以使用的个数是\(s_i=m/v_i\)个,也就转化为多重背包问题。
  • 使用多重背包问题的二进制优化统一处理即可。

总结

  • \(01\)背包是多重背包的特殊形式;

  • 完全背包在背包容量限制下,也是多重背包的特殊形式

  • 之所以它们各自有各自的状态转移方程,是因为特殊形式时的状态转移方程更简单,但本质上符合多重背包状态转移方程。

闫氏DP分析法

一维数组解法 【推荐】

#include <bits/stdc++.h>

using namespace std;
const int N = 1e5 + 10;
int n;    // 物品种类
int m;    // 背包容量
int f[N]; // dp数组
int idx;

struct Node {
    int v, w;
} c[N * 12];

int main() {
    cin >> n >> m;

    // 二进制打包
    for (int i = 1; i <= n; i++) {
        // 体积,价值,个数
        int v, w, s;
        cin >> v >> w >> s;

        // 根据题意做一些小的变形
        if (s == -1)
            s = 1; // 题目中s=-1表示只有1个
        else if (s == 0)
            s = m / v; // 完全背包(其实本质上就是多重背包):最多总体积/该物品体积向下取整
        // 如果是其它大于0的数字,那么是多重背包

        // 将完全背包和多重背包利用二进制优化转化为01背包
        for (int j = 1; j <= s; j *= 2) {
            c[++idx] = {j * v, j * w};
            s -= j;
        }
        // 不够下一个2^n时,独立成包
        if (s) c[++idx] = {s * v, s * w};
    }
    // 01背包
    for (int i = 1; i <= idx; i++)
        for (int j = m; j >= c[i].v; j--)
            f[j] = max(f[j], f[j - c[i].v] + c[i].w);
    // 输出
    printf("%d\n", f[m]);
    return 0;
}
posted @ 2021-12-13 19:36  糖豆爸爸  阅读(133)  评论(0编辑  收藏  举报
Live2D