点击查看代码
import os
import cv2
import numpy as np
import onnxruntime
import time
from tqdm import tqdm
from matplotlib import pyplot as plt
import math
CLASSES = ['jump_cap2', 'jump_cap4']
class YOLOV5():
def __init__(self, onnxpath):
self.onnx_session = onnxruntime.InferenceSession(onnxpath, providers=['CPUExecutionProvider'])
self.input_name = self.get_input_name()
self.output_name = self.get_output_name()
def get_input_name(self):
input_name = []
for node in self.onnx_session.get_inputs():
input_name.append(node.name)
return input_name
def get_output_name(self):
output_name = []
for node in self.onnx_session.get_outputs():
output_name.append(node.name)
return output_name
def get_input_feed(self, img_tensor):
input_feed = {}
for name in self.input_name:
input_feed[name] = img_tensor
return input_feed
def inference(self, img_path):
img = cv2.imread(img_path)
img_o=img.copy()
or_img = cv2.resize(img, (640, 640))
img = or_img[:, :, ::-1].transpose(2, 0, 1)
img = img.astype(dtype=np.float32)
img /= 255.0
img = np.expand_dims(img, axis=0)
input_feed = self.get_input_feed(img)
pred = self.onnx_session.run(None, input_feed)[0]
return pred, img_o
def nms(dets, thresh):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
areas = (y2 - y1 + 1) * (x2 - x1 + 1)
scores = dets[:, 4]
keep = []
index = scores.argsort()[::-1]
while index.size > 0:
i = index[0]
keep.append(i)
x11 = np.maximum(x1[i], x1[index[1:]])
y11 = np.maximum(y1[i], y1[index[1:]])
x22 = np.minimum(x2[i], x2[index[1:]])
y22 = np.minimum(y2[i], y2[index[1:]])
w = np.maximum(0, x22 - x11 + 1)
h = np.maximum(0, y22 - y11 + 1)
overlaps = w * h
ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
idx = np.where(ious <= thresh)[0]
index = index[idx + 1]
return keep
def xywh2xyxy(x):
y = np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2
y[:, 1] = x[:, 1] - x[:, 3] / 2
y[:, 2] = x[:, 0] + x[:, 2] / 2
y[:, 3] = x[:, 1] + x[:, 3] / 2
return y
def filter_box(org_box, conf_thres, iou_thres):
org_box = np.squeeze(org_box)
conf = org_box[..., 4] > conf_thres
box = org_box[conf == True]
cls_cinf = box[..., 5:]
cls = []
for i in range(len(cls_cinf)):
cls.append(int(np.argmax(cls_cinf[i])))
all_cls = list(set(cls))
output = []
for i in range(len(all_cls)):
curr_cls = all_cls[i]
curr_cls_box = []
curr_out_box = []
for j in range(len(cls)):
if cls[j] == curr_cls:
box[j][5] = curr_cls
curr_cls_box.append(box[j][:6])
curr_cls_box = np.array(curr_cls_box)
curr_cls_box = xywh2xyxy(curr_cls_box)
curr_out_box = nms(curr_cls_box, iou_thres)
for k in curr_out_box:
output.append(curr_cls_box[k])
output = np.array(output)
return output
def draw(image, box_data):
boxes = box_data[..., :4].astype(np.int32)
scores = box_data[..., 4]
classes = box_data[..., 5].astype(np.int32)
print("132:boxes",boxes)
img_height_o=image.shape[0]
img_width_o=image.shape[1]
x_ratio=img_width_o/640
y_ratio=img_height_o/640
max_area = 0
best_rec = None
best_cls = None
for box, score, cl in zip(boxes, scores, classes):
top, left, right, bottom = box
top=int(top*x_ratio)
right=int(right*x_ratio)
left=int(left*y_ratio)
bottom=int(bottom*y_ratio)
print("149:top",top)
print("149:right",right)
print("149:left",left)
print("149:bottom",bottom)
w = top-right
h = left -bottom
area = w*h
if area > max_area:
max_area = area
best_rec = [top, left, right, bottom]
best_cls = cl
top, left, right, bottom = best_rec
cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)
print("164:best_rec",best_rec)
return best_rec, best_cls
def onnx_infer(input, output, onnx_path, pin_rec_list, single_inference=False, conf_thres=0.1, iou_thres=0.1):
if single_inference:
model = YOLOV5(onnx_path)
outbox, or_img = model.inference(input)
outbox = filter_box(outbox, conf_thres, iou_thres)
best_rec, best_cls = draw(or_img, outbox)
file_name = input.split('/')[-1]
output = os.path.join(output, file_name)
cv2.imwrite(output, or_img)
else:
img_list = os.listdir(input)
for img in tqdm(img_list):
img_path = os.path.join(input, img)
model = YOLOV5(onnx_path)
outbox, or_img = model.inference(img_path)
outbox = filter_box(outbox, conf_thres, iou_thres)
best_rec = []
try:
best_rec, best_cls = draw(or_img, outbox)
except Exception as e:
continue
file_name = img.split('/')[-1]
save_path = os.path.join(output, file_name)
cv2.imwrite(save_path, or_img)
if __name__ == "__main__":
start_time = time.time()
onnx_path = 'model/best.onnx'
model = YOLOV5(onnx_path)
img_dir_path = 'testpicture'
img_list = os.listdir(img_dir_path)
save_dir_path = 'detimg/'
if not os.path.exists(save_dir_path):
os.makedirs(save_dir_path)
for img_name in tqdm(img_list):
img_path = os.path.join(img_dir_path, img_name)
output, or_img = model.inference(img_path)
outbox = filter_box(output, 0.25, 0.7)
try:
draw(or_img, outbox)
except Exception as e:
print(img_name)
continue
save_img_path = os.path.join(save_dir_path, img_name)
cv2.imwrite(save_img_path, or_img)
end_time = time.time()
print('inference time: {:.2f}'.format(end_time - start_time))
pass`
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)