K8S-集群-二进制安装
1、环境准备
1.1安装规划
服务器准备
服务器 | ip | 组件 |
k8s-master1 | 192.168.1.11 | ectd、api-server、controller-master、scheduler、docker |
k8s-node01 | 192.168.1.12 | etcd、kubelet、kube-proxy、docker |
k8s-node02 | 192.168.1.13 | etcd、kubelet、kube-proxy、docker |
软件版本
软件 | 版本 | 备注 |
OS | centos7 | |
kubernetes | 1.19.11 | |
Etcd | v3.4.15 | |
docker | 19.03.9 | |
cfssl、cfssljson、cfssl-certinfo | 1.5.0 | 证书自签工具-用的cloudflare的 |
1.2 系统设置
#以下操作3台主机都需要操作
# 1、修改主机名
hostnamectl set-hostname k8s-master1
hostnamectl set-hostname k8s-node01
hostnamectl set-hostname k8s-node02
# 2、主机名解析
cat >> /etc/hosts <<EOF
192.168.1.11 k8s-master1
192.168.1.12 k8s-node01
192.168.1.13 k8s-node02
EOF
# 3、禁用swap
swapoff -a && sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab
# 4、将桥接的IPV4的流量传递到iptables的链
cat > /etc/sysctl.d/k8s.conf << EOF
net.bridge.bridge-nf-call-ipv6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
sysctl --system
# 5、域名解析、相当于在网卡中添加DNS
echo "nameserver 8.8.8.8" >> /etc/resolv.conf
# 6、时间同步(也可以使用chrony)
yum install -y ntpdate
ntpdate ntp1.aliyun.com
# 7、添加定时器同步
crontab -e
- */30 * * * * /usr/sbin/ntpdate-u ntp1.aliyun.com >> /var/log/ntpdate.log 2>&1
# 8、创建日志目录
mkdir -p /var/log/kubernetes
# 9、禁用防火墙(iptables也是)
systemctl stop firewalld
systemctl disable firewalld
docker安装
#需要所有的集群都要安装
# 1、创建一个软件包下载的目录
mkdir -p $HOME/k8s-install && cd $HOME/k8s-install
# 2、下载docker二进制包
wget下载:wget https://download.docker.com/linux/static/stable/x86_64/docker-19.03.9.tgz
- 注意:如果wget无法连接下载直接复制链接到浏览器下载即可
解压:tar zxvf docker-19.03.9.tgz
迁移二进制文件:mv docker/* /usr/local/bin/
查看版本:docker -v
# 3、配置开机启动
-------------------------------------------------
cat > /lib/systemd/system/docker.service << EOF
[Unit]
Description=Docker Application Container Engine
Documentation=https://docs.docker.com
After=network-online.target firewalld.service
Wants=network-online.target
[Service]
Type=notify
ExecStart=/usr/local/bin/dockerd
ExecReload=/bin/kill -s HUP $MAINPID
LimitNOFILE=infinity
LimitNPROC=infinity
LimitCORE=infinity
TimeoutStartSec=0
Delegate=yes
KillMode=process
Restart=on-failure
StartLimitBurst=3
StartLimitInterval=60s
[Install]
WantedBy=multi-user.target
EOF
-----------------------------------------------
# 4、启动docker
systemctl daemon-reload
systemctl enable docker
systemctl start docker
3. TLS 证书
证书工具
#这里使用cloudflare的cfssl工具来自签证书
# 1、到指定目录下
cd $HOME/k8s-install
# 2、下载工具
- 如果wget下提示无法连接、可复制网址下载
wget https://github.com/cloudflare/cfssl/releases/download/v1.5.0/cfssl_1.5.0_linux_amd64
wget https://github.com/cloudflare/cfssl/releases/download/v1.5.0/cfssljson_1.5.0_linux_amd64
wget https://github.com/cloudflare/cfssl/releases/download/v1.5.0/cfssl-certinfo_1.5.0_linux_amd64
# 3、移动
mv cfssl_1.5.0_linux_amd64 /usr/local/bin/cfssl
mv cfssljson_1.5.0_linux_amd64 /usr/local/bin/cfssljson
mv cfssl-certinfo_1.5.0_linux_amd64 /usr/bin/cfssl-certinfo
chmod 777 /usr/local/bin/*
证书归类
生成CA证书和密钥文件如下:
组件 | 证书 | 密钥 | 备注 |
etcd | ca.pem | etcd-key.pem | |
apiserver | ca.pem、apiserver.pem | apiserver-key.pem | |
controller-manage | ca.pem、kube-controller-manage.pem | ca-key.pem、kube-controller-manage-key.pem | kubeconfig |
scheduler | ca.pem、kube-scheduler.pem | kube-scheduler-key.pem | kubeconfig |
kubelet | ca.pem | kubeconfig+token | |
kube-proxy | ca.pem、kube-proxy.pem | kube-proxy-key.pem | kubeconfig |
kubectl | ca.pem、admin.pem | admin-key.pem |
CA证书
CA:Certificate Authority
# 1、mkdir -p /root/ssl && cd /root/ssl
# 2、CA证书配置文件
----------------------------------------------------------------------
cat > ca-config.json <<EOF
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"kubernetes": {
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
],
"expiry": "87600h"
}
}
}
}
EOF
-------------------------------------------------------------
# 3、CA 证书签名文件
---------------------------------------------------------------
cat > ca-csr.json <<EOF
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "System"
}
],
"ca": {
"expiry": "87600h"
}
}
EOF
----------------------------------------------------
# 4、生成CA证书和密钥(通过上面的两个json文件来配置CA证书和密钥相关信息)
cfssl gencert -initca ca-csr.json |cfssljson -bare ca
# 5、生成三个文件
- ca.csr
- ca-key.pem
- ca.pem
etcd证书
#注意:hosts 中的IP地址、分别制定了etcd集群的主机IP(根据自身环境修改)
# 1、证书签名请求文件
-------------------------------------------------
cat > etcd-csr.json <<EOF
{
"CN": "etcd",
"hosts": [
"127.0.0.1",
"localhost",
"192.168.1.11",
"192.168.1.12",
"192.168.1.13"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "etcd",
"OU": "System"
}
]
}
EOF
---------------------------------------------------------
# 2、生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes etcd-csr.json | cfssljson -bare etcd
# 3、生成三个证书
- etcd.csr
- etcd-key.pem
- etcd.pem
kube-apiserver证书
#注意:hosts中的IP地址 分别指定了kubernetes master集群的主机IP个kubenertes服务器的IP(一般是kube-apiserver指定的service-cluster-ip-range网段中的第一个ip、如 10.254.0.1)
# 1、证书签名请求文件
-----------------------------------------------------------
cat > apiserver-csr.json <<EOF
{
"CN": "kubernetes",
"hosts": [
"127.0.0.1",
"localhost",
"192.168.1.1",
"192.168.1.2",
"192.168.1.11",
"192.168.1.12",
"192.168.1.13",
"10.254.0.1",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
}
EOF
----------------------------------------------------------------
# 2、生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes apiserver-csr.json | cfssljson -bare apiserver
# 3、生成3个证书
- apiserver.pem
- apiserver-key.pem
- apiserver.csr
kube-controller-manager证书
# 1、生成签名请求文件
-----------------------------------------------
cat > kube-controller-manager-csr.json <<EOF
{
"CN": "system:kube-controller-manager",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "system:masters",
"OU": "System"
}
]
}
EOF
------------------------------------------------------
# 2、生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-controller-manager-csr.json | cfssljson -bare kube-controller-manager
# 3、3个证书
- kube-controller-manager.pem
- kube-controller-manager-key.pem
- kube-controller-manager.csr
kube-scheduler证书
# 1、证书签名请求文件
--------------------------------------------------------
cat > kube-scheduler-csr.json << EOF
{
"CN": "system:kube-scheduler",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "system:masters",
"OU": "System"
}
]
}
EOF
---------------------------------------------------------------------
# 2、生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-scheduler-csr.json | cfssljson -bare kube-scheduler
# 3、3个证书
- kube-scheduler.pem
- kube-scheduler-key.pem
- kube-scheduler.csr
admin证书
#后续kube-apiserver使用RBAC对客户端(如 kubelet、kube-proxy、 pod)请求进行授权
#kube-apiserver预定义了一些RBAC使用的RoleBindings、如cluster-admin 将Group system:master 与Role cluster-admin 绑定、该Role授权了调用kube-apiserver的所有API的权限
#文件中的 O 指该整数的Group未system:masters、kubelet使用该证书访问kube-apiserver是、由于证书被CA签名、所以认证通过、同时由于证书用户组为经过预授权的 system:masters 所以被授权访问所有API的权限
# 1、证书签名请求文件
-------------------------------------------------------
cat > admin-csr.json <<EOF
{
"CN": "admin",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "system:masters",
"OU": "System"
}
]
}
EOF
----------------------------------------------------------------
# 2、生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes admin-csr.json | cfssljson -bare admin
admin.pem
admin-key.pem
admin.csr
搭建完 kubernetes 集群后,可以通过命令: kubectl get clusterrolebinding cluster-admin -o yaml ,查看到 clusterrolebinding cluster-admin 的 subjects 的 kind 是 Group,name 是 system:masters。 roleRef 对象是 ClusterRole cluster-admin。 即 system:masters Group 的 user 或者 serviceAccount 都拥有 cluster-admin 的角色。 因此在使用 kubectl 命令时候,才拥有整个集群的管理权限。
kube-proxy证书
- CN 指定该证书的User为 system:kube-proxy;
- kube-apiserver 预定义的RoleBinding system:node-proxier 将User system:kube-proxy 与Role system:node-proxier绑定、该Role授予了调用kube-apiserver Proxy相关的API的权限
# 1、证书签名请求文件
---------------------------------------------------------------
cat > kube-proxy-csr.json <<EOF
{
"CN": "system:kube-proxy",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
}
EOF
---------------------------------------------------------------------------------------------
# 2、生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
- kube-proxy.pem
- kube-proxy-key.pem
- kube-proxy.csr
查看证书信息
执行:cfssl-certinfo -cert apiserver.pem
----------------------------------------------------------------------
{
"subject": {
"common_name": "kubernetes",
"country": "CN",
"organization": "k8s",
"organizational_unit": "System",
"locality": "BeiJing",
"province": "BeiJing",
"names": [
"CN",
"BeiJing",
"BeiJing",
"k8s",
"System",
"kubernetes"
]
},
"issuer": {
"common_name": "kubernetes",
"country": "CN",
"organization": "k8s",
"organizational_unit": "System",
"locality": "BeiJing",
"province": "BeiJing",
"names": [
"CN",
"BeiJing",
"BeiJing",
"k8s",
"System",
"kubernetes"
]
},
"serial_number": "318482383509981191015409049295954077632898095735",
"sans": [
"localhost",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local",
"127.0.0.1",
"192.168.1.1",
"192.168.1.2",
"192.168.1.11",
"192.168.1.12",
"192.168.1.13",
"10.254.0.1"
],
"not_before": "2024-06-30T05:45:00Z",
"not_after": "2034-06-28T05:45:00Z",
"sigalg": "SHA256WithRSA",
"authority_key_id": "",
"subject_key_id": "F5:45:42:30:C4:73:05:19:DA:1B:0D:87:30:23:C2:BD:F2:54:D3:C1",
"pem": "-----BEGIN CERTIFICATE-----\nMIIEezCCA2OgAwIBAgIUN8k+dqGJPVcuJCFDutBbEm7lWncwDQYJKoZIhvcNAQEL\nBQAwZTELMAkGA1UEBhMCQ04xEDAOBgNVBAgTB0JlaUppbmcxEDAOBgNVBAcTB0Jl\naUppbmcxDDAKBgNVBAoTA2s4czEPMA0GA1UECxMGU3lzdGVtMRMwEQYDVQQDEwpr\ndWJlcm5ldGVzMB4XDTI0MDYzMDA1NDUwMFoXDTM0MDYyODA1NDUwMFowZTELMAkG\nA1UEBhMCQ04xEDAOBgNVBAgTB0JlaUppbmcxEDAOBgNVBAcTB0JlaUppbmcxDDAK\nBgNVBAoTA2s4czEPMA0GA1UECxMGU3lzdGVtMRMwEQYDVQQDEwprdWJlcm5ldGVz\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAtTW9yttaA+hbiOu6FJhn\nuiBAaf6lMnJMOzc7hWDVdRgMs18Fq0o8rU9ZEpDO+Wh78o4VZlMGjW3fplQEg34R\nwpND7/VdFkIHLKJTU+QhPVsxXbBoPGmIQ8EEf/PEFWZmg3fWGIBYnEfTwo0Bd+1f\njnjeYPnwxrU952KTKqsTnPRIH1GtoCbVNXvIZcFiViAwtoUENi7eBSzS4vRrYn25\nVqe9QYsUlkgfElyDQyg5Cuj8WsfILopS9KwoV2Bsfny5ZkXR8FehMsQlPcBoIN/b\nn66DqNk2IqinbHusGzxqLoclcyUbmAo5ck69cGufqxnPwimfwR+pZxPI4OzPVnfg\nPQIDAQABo4IBITCCAR0wDgYDVR0PAQH/BAQDAgWgMB0GA1UdJQQWMBQGCCsGAQUF\nBwMBBggrBgEFBQcDAjAMBgNVHRMBAf8EAjAAMB0GA1UdDgQWBBT1RUIwxHMFGdob\nDYcwI8K98lTTwTCBvgYDVR0RBIG2MIGzgglsb2NhbGhvc3SCCmt1YmVybmV0ZXOC\nEmt1YmVybmV0ZXMuZGVmYXVsdIIWa3ViZXJuZXRlcy5kZWZhdWx0LnN2Y4Iea3Vi\nZXJuZXRlcy5kZWZhdWx0LnN2Yy5jbHVzdGVygiRrdWJlcm5ldGVzLmRlZmF1bHQu\nc3ZjLmNsdXN0ZXIubG9jYWyHBH8AAAGHBMCoAQGHBMCoAQKHBMCoAQuHBMCoAQyH\nBMCoAQ2HBAr+AAEwDQYJKoZIhvcNAQELBQADggEBACCNDrq2lo5OrsgcEpPRJeKx\nNBvdHw+wymw06ER6PUjGzEp3I1XGNrk/O72gh7OrRvuFp3grdjUJ2zE9z3/GT36g\n3m0Zjsga9zTJTurYfYaCxBwTKk0q6pU52au+7wbEs8JNOWG3qJM+5eaSgxzKJW5A\n1euuNk9RwPZq0sPtIZNK+y0fgBlUq6bZArySSEEkcJfsGqaEI92nIMD/euZMg/8n\nbossIwqydyA35cy5gVIMONhQb/SvltpuizMVelIoKjc0DmJAL/14+fKGY4HRaa9c\nUSDw9tID1KjFXRn3bdQwyj7ATGrNg4xreS1e2t8+JH/EPp5IXqPAagJE4OFCEE4=\n-----END CERTIFICATE-----\n"
}
--------------------------------------------------------------------------------------------------
分发证书-分发到所有的节点
#在master节点上
mkdir -p /etc/kubernetes/pki
cp *.pem /etc/kubernetes/pki/
#这里注意其它主机的目录要先创建(可以使用rsync分发就不需要逐个节点创建目录-参考)
scp /etc/kubernetes/pki/* root@192.168.1.12:/etc/kubernetes/pki/
scp /etc/kubernetes/pki/* root@192.168.1.13:/etc/kubernetes/pki/
#分发脚本:vi /usr/local/bin/xsync
只需执行 xsync <分发的文件>
#注意:需要安装:yum install rsync -y 分发程序(每台节点上都需要安装)
--------------------------------------------------------------------------------
#!/bin/bash
pcount=$#
user="root"
#分发的主机
hosts=(k8s-node01 k8s-node02)
if [ $pcount -lt 1 ]
then
echo No Enough Arguement!
exit;
fi
#2. 遍历集群所有机器
for host in "${hosts[@]}"
do
echo ==================== $host ====================
#3. 递归遍历所有目录
for file in $@
do
#4 判断文件是否存在
if [ -e $file ]
then
#5. 获取全路径、获取执行脚本时输入的路径 如:xsync /opt/module/xx.txt
pdir=$(cd -P $(dirname $file); pwd)
echo pdir=$pdir
#6. 获取当前文件的名称、获取输入的文件名
fname=$(basename $file)
echo fname=$fname
#7. 通过ssh执行命令:在$host主机上递归创建文件夹(如果存在该文件夹)
/usr/bin/ssh $user@$host "mkdir -p $pdir"
#8. 远程同步文件至$host主机的$USER用户的$pdir文件夹下
/usr/bin/rsync -av $pdir/$fname $user@$host:$pdir
else
echo $file Does Not Exists!
fi
done
done
--------------------------------------------------------------------------------------------------
安装etcd
节点1:etcd-1 192.168.1.11
节点2:etcd-2 192.168.1.12
节点2:etcd-3 192.168.1.13
#注意:etcd可以是单独的集群节点、不一定是和kubelet等组件安装在一台服务器上
#这里都安装在master1、node1、node2上了
- master-1上的操作(192.168.1.11)-后分发到集群
# 1、去到下载目录
cd /root/k8s-install/
# 2、下载并安装
下载:wget https://github.com/etcd-io/etcd/releases/download/v3.4.15/etcd-v3.4.15-linux-amd64.tar.gz
解压:tar zxvf etcd-v3.4.15-linux-amd64.tar.gz
迁移:mv etcd-v3.4.15-linux-amd64/{etcd,etcdctl} /usr/bin/
# 3、配置文件(再三强调-配置文件要多检查-这一步错了后面就无法正常添加etcd到集群中了)
- ETCD_NAME
- 和有ip的地方
mkdir -p /etc/etcd
----------------------------------------------------------------------------
cat > /etc/etcd/etcd.conf << EOF
#[Member]
ETCD_NAME="etcd-1"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.1.11:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.1.11:2379,https://127.0.0.1:2379"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.1.11:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.1.11:2379"
ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.1.11:2380,etcd-2=https://192.168.1.12:2380,etcd-3=https://192.168.1.13:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
EOF
------------------------------------------------------------------------------------------------------
#配置文件解析:
[基本设置]
ETCD_NAME="etcd-1" 节点名-唯一值
ETCD_DATA_DIR:etcd存储数据的目录。etcd的数据、快照和日志文件都存储在这个目录中。
ETCD_LISTEN_PEER_URLS:这个节点监听其他etcd节点连接的URL。在集群中,etcd节点通过这个URL进行相互通信
ETCD_LISTEN_CLIENT_URLS:这个节点监听客户端连接的URL。客户端(例如etcdctl)通过这些URL与etcd通信。
[集群设置]
ETCD_INITIAL_ADVERTISE_PEER_URLS:这个节点向集群中其他节点通告的地址。在集群中,其他etcd节点会使用这个URL与当前节点通信。
ETCD_ADVERTISE_CLIENT_URLS:这个节点向客户端通告的地址。客户端(例如etcdctl)会使用这个URL与当前节点通信。
ETCD_INITIAL_CLUSTER:定义了集群中所有etcd节点的名称和对应的 peerURL。这是集群的初始成员列表。
ETCD_INITIAL_CLUSTER_TOKEN:用于标识etcd集群的唯一令牌。可以防止不同集群的etcd节点误加入到其他集群中。
ETCD_INITIAL_CLUSTER_STATE:集群的初始状态。在新建集群时,设置为new;如果向现有集群添加节点,应设置为existing。
# 4、配置开机启动
----------------------------------------------------------------------------------------
cat > /lib/systemd/system/etcd.service << EOF
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target
[Service]
Type=notify
EnvironmentFile=-/etc/etcd/etcd.conf
ExecStart=/usr/bin/etcd \
--cert-file=/etc/kubernetes/pki/etcd.pem \
--key-file=/etc/kubernetes/pki/etcd-key.pem \
--peer-cert-file=/etc/kubernetes/pki/etcd.pem \
--peer-key-file=/etc/kubernetes/pki/etcd-key.pem \
--trusted-ca-file=/etc/kubernetes/pki/ca.pem \
--peer-trusted-ca-file=/etc/kubernetes/pki/ca.pem \
--logger=zap
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
----------------------------------------------------------------------------------------------------------------
# 5、将上面的文件分发到集群
- /usr/bin/etcd
- /usr/bin/etcdctl
- /etc/etcd/etcd.conf
- etcd.service
#这里使用分发脚本 xsync
------------------------------------------
xsync /usr/bin/etcd
xsync /usr/bin/etcdctl
xsync /etc/etcd/etcd.conf
xsync /lib/systemd/system/etcd.service
------------------------------------------
# 6、修改其它主机分发的配置文件:/etc/etcd/etcd.conf
- 如etcd-2(node1)
vim /etc/etcd/etcd.conf
-----------------------------------------------------------------------
#[Member]
ETCD_NAME="etcd-2" #改这里ip
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.1.12:2380" ##改这里ip
ETCD_LISTEN_CLIENT_URLS="https://192.168.1.12:2379,https://127.0.0.1:2379" #改ip
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.1.12:2380" #改ip
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.1.12:2379" #改ip
ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.1.11:2380,etcd-2=https://192.168.1.12:2380,etcd-3=https://192.168.1.13:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
---------------------------------------------------------------------------------------------------------------------------
-- 如etcd-3(node2)
vim /etc/etcd/etcd.conf
----------------------------------------------------------------------------------------
#[Member]
ETCD_NAME="etcd-3"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.1.13:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.1.13:2379,https://127.0.0.1:2379"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.1.13:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.1.13:2379"
ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.1.11:2380,etcd-2=https://192.168.1.12:2380,etcd-3=https://192.168.1.13:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
---------------------------------------------------------------------------------------------------------
# 7、启动etcd
#注意:这里需要检查检查再检查配置文件再逐个启动(注意当启动一个后快速去启动其他节点的etcd不然启动时会一直连不上其他节点而卡住)
systemctl daemon-reload
systemctl start etcd
systemctl enable etcd
#8、查看运行状态
etcdctl member list --cacert=/etc/kubernetes/pki/ca.pem --cert=/etc/kubernetes/pki/etcd.pem --key=/etc/kubernetes/pki/etcd-key.pem --write-out=table
+------------------+---------+--------+---------------------------+---------------------------+------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS | IS LEARNER |
+------------------+---------+--------+---------------------------+---------------------------+------------+
| aa869cb0f2e7ed31 | started | etcd-1 | https://192.168.1.11:2380 | https://192.168.1.11:2379 | false |
| b08a644fd7247c5e | started | etcd-3 | https://192.168.1.13:2380 | https://192.168.1.13:2379 | false |
| bb9bd2baaebf7d95 | started | etcd-2 | https://192.168.1.12:2380 | https://192.168.1.12:2379 | false |
+------------------+---------+--------+---------------------------+---------------------------+------------+
#9、查看健康状态
etcdctl endpoint health --cacert=/etc/kubernetes/pki/ca.pem --cert=/etc/kubernetes/pki/etcd.pem --key=/etc/kubernetes/pki/etcd-key.pem --cluster --write-out=table
+---------------------------+--------+-------------+-------+
| ENDPOINT | HEALTH | TOOK | ERROR |
+---------------------------+--------+-------------+-------+
| https://192.168.1.13:2379 | true | 22.185914ms | |
| https://192.168.1.11:2379 | true | 29.667937ms | |
| https://192.168.1.12:2379 | true | 31.239728ms | |
+---------------------------+--------+-------------+-------+
==================================================================================================================================
#如果某一台节点配错ip信息或端口等、启动后其它节点都正常启动、唯有某个节点无法启动、说明这个节点的配置信息有问题、且不一定是有问题的节点的配置文件有问题、必须所有节点都要检查关于这个节点的配置(如ip端口)
如报错:
-{"level":"fatal","ts":"2024-06-03T22:23:52.367+0800","caller":"etcdmain/etcd.go:271","msg":"discovery failed","error":"couldn't find local name。。。。。。。} 这里由于我的ip配错了
- 修改集群IP后(因为文件是分发下去的三个节点都必须改动- 重新daemon-reload)
- ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.177.15:2380,etcd-2=https://192.168.177.16:2380,etcd-3=https://192.168.177.17:2380"
- 再启动、发现又报错:
- request sent was ignored (cluster ID mismatch: remote[d1c51ceb92fa1681]=fa335e6f19dcefbc, local=403adee217790c7b)
- 这是由于 这台配置错的的集群的id已经被记录了、所以无法启动
- 查看集群状态:
- etcdctl member list --cacert=/etc/kubernetes/pki/ca.pem --cert=/etc/kubernetes/pki/etcd.pem --key=/etc/kubernetes/pki/etcd-key.pem --write-out=table
+------------------+---------+--------+------------------------------+-----------------------------+------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS | IS LEARNER |
+------------------+---------+--------+------------------------------+-----------------------------+------------+
| 107de17488d67a29 | started | etcd-1 | https://192.168.177.15:2380 | https://192.168.177.15:2379 | false |
| d1c51ceb92fa1681 | started | etcd-3 | https://192.168.177.17:2380 | https://192.168.177.17:2379 | false |
| fe8a0b5298c256c3 | started | etcd-2 | https://1192.168.177.16:2380 | | false |
+------------------+---------+--------+------------------------------+-----------------------------+------------+
- 注意要在正常运行的节点上执行、发现etcd-2 节点ip是配错了、需要将这个节点删除再启动即可
- 删除 节点:
- etcdctl member remove fe8a0b5298c256c3 --cacert=/etc/kubernetes/pki/ca.pem --cert=/etc/kubernetes/pki/etcd.pem --key=/etc/kubernetes/pki/etcd-key.pem
- 删除: rm -rf /var/lib/etcd/*
- 需要**把master和node节点的/var/lib/etcd/目录下的缓存都删除一遍,然后重启etcd(如果是新环境可以这样操作、已存在的环境不建议这样操作)
- 将配置文件中的 initial-cluster-state: new (如果是existing改为new)
- 重新启动etcd服务
- systemctl start etcd
- 查看节点运行状态:etcdctl member list --cacert=/etc/kubernetes/pki/ca.pem --cert=/etc/kubernetes/pki/etcd.pem --key=/etc/kubernetes/pki/etcd-key.pem --write-out=table
+------------------+---------+--------+-----------------------------+-----------------------------+------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS | IS LEARNER |
+------------------+---------+--------+-----------------------------+-----------------------------+------------+
| 107de17488d67a29 | started | etcd-1 | https://192.168.177.15:2380 | https://192.168.177.15:2379 | false |
| cdfed09f52b6bf94 | started | etcd-2 | https://192.168.177.16:2380 | https://192.168.177.16:2379 | false |
| d1c51ceb92fa1681 | started | etcd-3 | https://192.168.177.17:2380 | https://192.168.177.17:2379 | false |
+------------------+---------+--------+-----------------------------+-----------------------------+------------+
- 此时已正常
- 查看节点健康状态
etcdctl endpoint health --cacert=/etc/kubernetes/pki/ca.pem --cert=/etc/kubernetes/pki/etcd.pem --key=/etc/kubernetes/pki/etcd-key.pem --cluster --write-out=table
+-----------------------------+--------+-------------+-------+
| ENDPOINT | HEALTH | TOOK | ERROR |
+-----------------------------+--------+-------------+-------+
| https://192.168.177.15:2379 | true | 8.719025ms | |
| https://192.168.177.16:2379 | true | 12.132317ms | |
| https://192.168.177.17:2379 | true | 13.110553ms | |
+-----------------------------+--------+-------------+-------+
#以上因为配置/etc/etcd/etcd.conf 文件时ip写错了导致后续集群报错所以重头来过了
这是某个节点配置错误后配置改回来后无法加入节点、原因是id对不上了
kubernetes Master节点安装
kubernetes master 节点组件
- kube-apiserver
- kube-scheduler
- kube-controller-manager
- kubelet(非必须、但必要)
- kube-proxy(非必须、但必要)
#结合下面的三张图可以看出:
各个组件间的交互都是通过 api-server 来实现的
kube-controller-manager 与 kube-scheduler:它们主要通过 API Server 间接交互。
控制器(kube-controller-manager)和调度器( kube-scheduler)都是与 API Server 通信,而不是直接与 kubelet 通信。
kubelet:kubelet 与 API Server 直接通信,获取 Pod 信息和报告节点状态等。
组件 | 作用 | 关联 |
kube-apiserver | API服务:是kubernetes的核心组件、负责接收来自客户端的请求、并对这些请求进行认证、授权和处理、他也是集群状态的唯一来源、并负责将集群状态更新到etcd中 | 与所有其他组件进行通信 |
kube-scheduler | 调度器:负责将新创建的 Pod 分配到合适的节点上。调度器也主要通过与 API Server 交互来完成其工作。调度器会从 API Server 获取未调度的 Pod 信息,并根据预定义的策略(如资源需求、亲和性、反亲和性等)选择最合适的节点,然后将调度决定更新回 API Server。 | 与kube-apiserver直接通信与kube-contoller-manager间接通信 |
kube-contoller-manager | 控制管理器:负责管理 Kubernetes 集群中的各种控制器(例如节点控制器、复制控制器、服务控制器等),这些控制器主要通过与 API Server 交互来完成各自的任务。它们从 API Server 获取集群状态信息,并向 API Server 提交更新请求。 | 与 kube-apiserver 直接通信与kube-scheduler间接通信 |
kubelet | 工作节点代理:运行在每个节点上的组件,负责管理该节点上的容器。kubelet 会从 API Server 获取调度好的 Pod 信息,并负责容器的创建、启动、停止以及健康检查等。 | 与kube-apiserver个kube-proxy直接通信 |
kube-proxy | 代理:负责将来自外部的网络流量路由到工作节点上的pod、他维护每个服务的后端端点列表、并使这些列表将流量路由到正确的pod上 | 与kueb-apiserver与kubelet直接通信 |
安装准备
# 1、去到下载源码包路径
cd /root/k8s-install
# 2、下载安装包 - kubernetes-server-linux-amd64.tar.gz
下载:wget https://dl.k8s.io/v1.19.11/kubernetes-server-linux-amd64.tar.gz
解压:tar zxvf kubernetes-server-linux-amd64.tar.gz
cd到:cd kubernetes/server/bin
拷贝:cp kube-apiserver kube-scheduler kube-controller-manager kubectl kubelet kube-proxy /usr/bin
api-server
TLS Bootstrapping Token
启用TLS Bootstrapping机制
TLS Bootstrapping:Master apiserver 启用TLS认证后、node节点kubelet和kube-proxy要与kube-apiserver进行通信、必须使用CA签发的有效证书才可以
当Node节点很多时、这种客户端证书颁发需要大量的工作、同样也会增加集群扩展的复杂度。
为了简化流程、kubernetes引入了TLS Bootstrapping机制来自动颁发客户端证书、kubelet会以一个低权限用户自动向apiserver申请证书、kubelet证书有apiserver动态签署。
所以强烈建议在Node节点上使用这种方式、目前主要用于kubelet上、
kube-proxy还是有我们统一颁发一个证书
TLS Bootsrapping 工作流程
# 1、执行:获取token
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
# 2、启动配置文件
- 格式:token,用户名,UID,用户组
cat > /etc/kubernetes/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:node-bootstrapper"
EOF
配置api-server 的配置文件
--service-cluster-ip-range=10.254.0.0/16: Service IP 段
注意:修改对应的ip地址--检查检查再检查
cat > /etc/kubernetes/kube-apiserver.conf << EOF
KUBE_APISERVER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/var/log/kubernetes \\
--etcd-servers=https://192.168.1.11:2379,https://192.168.1.12:2379,https://192.168.1.13:2379 \\
--bind-address=192.168.1.11 \\
--secure-port=6443 \\
--advertise-address=192.168.1.11 \\
--allow-privileged=true \\
--service-cluster-ip-range=10.254.0.0/16 \\
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction \\
--authorization-mode=RBAC,Node \\
--enable-bootstrap-token-auth=true \\
--token-auth-file=/etc/kubernetes/token.csv \\
--service-node-port-range=30000-32767 \\
--kubelet-client-certificate=/etc/kubernetes/pki/apiserver.pem \\
--kubelet-client-key=/etc/kubernetes/pki/apiserver-key.pem \\
--tls-cert-file=/etc/kubernetes/pki/apiserver.pem \\
--tls-private-key-file=/etc/kubernetes/pki/apiserver-key.pem \\
--client-ca-file=/etc/kubernetes/pki/ca.pem \\
--service-account-key-file=/etc/kubernetes/pki/ca-key.pem \\
--service-account-issuer=api \\
--service-account-signing-key-file=/etc/kubernetes/pki/apiserver-key.pem \\
--etcd-cafile=/etc/kubernetes/pki/ca.pem \\
--etcd-certfile=/etc/kubernetes/pki/etcd.pem \\
--etcd-keyfile=/etc/kubernetes/pki/etcd-key.pem \\
--requestheader-client-ca-file=/etc/kubernetes/pki/ca.pem \\
--proxy-client-cert-file=/etc/kubernetes/pki/apiserver.pem \\
--proxy-client-key-file=/etc/kubernetes/pki/apiserver-key.pem \\
--requestheader-allowed-names=kubernetes \\
--requestheader-extra-headers-prefix=X-Remote-Extra- \\
--requestheader-group-headers=X-Remote-Group \\
--requestheader-username-headers=X-Remote-User \\
--enable-aggregator-routing=true \\
--audit-log-maxage=30 \\
--audit-log-maxbackup=3 \\
--audit-log-maxsize=100 \\
--audit-log-path=/var/log/kubernetes/k8s-audit.log"
EOF
配置api-server开机启动
# 1、配置server 文件
---------------------------------------------------------------------
cat > /lib/systemd/system/kube-apiserver.service << EOF
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/etc/kubernetes/kube-apiserver.conf
ExecStart=/usr/bin/kube-apiserver \$KUBE_APISERVER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
---------------------------------------------------------------------
# 2、启动
systemctl daemon-reload
systemctl start kube-apiserver
systemctl status kube-apiserver
systemctl enable kube-apiserver
kube-controller-manager
kubeconfig文件
#直接执行命令、注意修改ip
KUBE_CONFIG="/etc/kubernetes/kube-controller-manager.kubeconfig"
KUBE_APISERVER="https://192.168.1.11:6443"
kubectl config set-cluster kubernetes \
--certificate-authority=/etc/kubernetes/pki/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials kube-controller-manager \
--client-certificate=/etc/kubernetes/pki/kube-controller-manager.pem \
--client-key=/etc/kubernetes/pki/kube-controller-manager-key.pem \
--embed-certs=true \
--kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \
--cluster=kubernetes \
--user=kube-controller-manager \
--kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}
kube-controller-manger 配置文件
--cluster-cidr=10.244.0.0/16: Pod IP 段
--service-cluster-ip-range=10.254.0.0/16: Service IP 段
cat > /etc/kubernetes/kube-controller-manager.conf << EOF
KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/var/log/kubernetes \\
--leader-elect=true \\
--kubeconfig=/etc/kubernetes/kube-controller-manager.kubeconfig \\
--bind-address=127.0.0.1 \\
--allocate-node-cidrs=true \\
--cluster-cidr=10.244.0.0/16 \\
--service-cluster-ip-range=10.254.0.0/16 \\
--cluster-signing-cert-file=/etc/kubernetes/pki/ca.pem \\
--cluster-signing-key-file=/etc/kubernetes/pki/ca-key.pem \\
--root-ca-file=/etc/kubernetes/pki/ca.pem \\
--service-account-private-key-file=/etc/kubernetes/pki/ca-key.pem \\
--cluster-signing-duration=87600h0m0s"
EOF
配置开机启动
# 配置kube-controller-manager 的server文件
------------------------------------------------------------------------
cat > /lib/systemd/system/kube-controller-manager.service << EOF
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=-/etc/kubernetes/kube-controller-manager.conf
ExecStart=/usr/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
------------------------------------------------------------------------
# 启动
systemctl daemon-reload
systemctl start kube-controller-manager
systemctl status kube-controller-manager
systemctl enable kube-controller-manager
scheduler
kubeconfig 文件
# 注意修改ip
KUBE_CONFIG="/etc/kubernetes/kube-scheduler.kubeconfig"
KUBE_APISERVER="https://192.168.1.11:6443"
kubectl config set-cluster kubernetes \
--certificate-authority=/etc/kubernetes/pki/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials kube-scheduler \
--client-certificate=/etc/kubernetes/pki/kube-scheduler.pem \
--client-key=/etc/kubernetes/pki/kube-scheduler-key.pem \
--embed-certs=true \
--kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \
--cluster=kubernetes \
--user=kube-scheduler \
--kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}
kube-scheduler 的配置文件
cat > /etc/kubernetes/kube-scheduler.conf << EOF
KUBE_SCHEDULER_OPTS="--logtostderr=false \
--v=2 \
--log-dir=/var/log/kubernetes \
--leader-elect \
--kubeconfig=/etc/kubernetes/kube-scheduler.kubeconfig \
--bind-address=127.0.0.1"
EOF
配置开机启动
cat > /lib/systemd/system/kube-scheduler.service << EOF
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=-/etc/kubernetes/kube-scheduler.conf
ExecStart=/usr/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl start kube-scheduler
systemctl status kube-scheduler
systemctl enable kube-scheduler
kubelet
参数配置文件
cat > /etc/kubernetes/kubelet-config.yml << EOF
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: 0.0.0.0
port: 10250
readOnlyPort: 10255
cgroupDriver: cgroupfs
clusterDNS:
- 10.254.0.2
clusterDomain: cluster.local
failSwapOn: false
authentication:
anonymous:
enabled: false
webhook:
cacheTTL: 2m0s
enabled: true
x509:
clientCAFile: /etc/kubernetes/pki/ca.pem
authorization:
mode: Webhook
webhook:
cacheAuthorizedTTL: 5m0s
cacheUnauthorizedTTL: 30s
evictionHard:
imagefs.available: 15%
memory.available: 100Mi
nodefs.available: 10%
nodefs.inodesFree: 5%
maxOpenFiles: 1000000
maxPods: 110
EOF
kubeconfig 配置文件
# 注意修改ip
-------------------------------------------------------------
BOOTSTRAP_TOKEN=$(cat /etc/kubernetes/token.csv | awk -F, '{print $1}')
KUBE_CONFIG="/etc/kubernetes/bootstrap.kubeconfig"
KUBE_APISERVER="https://192.168.1.11:6443"
# 生成 kubelet bootstrap kubeconfig 配置文件
kubectl config set-cluster kubernetes \
--certificate-authority=/etc/kubernetes/pki/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials "kubelet-bootstrap" \
--token=${BOOTSTRAP_TOKEN} \
--kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \
--cluster=kubernetes \
--user="kubelet-bootstrap" \
--kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}
kubelet 的配置文件
其中:--kubeconfig=/etc/kubernetes/kubelet.kubeconfig 在加入集群时生成
注意:--hostname-override=master-1 改为实际的节点名
cat > /etc/kubernetes/kubelet.conf << EOF
KUBELET_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/var/log/kubernetes \\
--hostname-override=k8s-master1 \\
--network-plugin=cni \\
--kubeconfig=/etc/kubernetes/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/etc/kubernetes/bootstrap.kubeconfig \\
--config=/etc/kubernetes/kubelet-config.yml \\
--cert-dir=/etc/kubernetes/pki \\
--pod-infra-container-image=mirrorgooglecontainers/pause-amd64:3.1"
EOF
授权kubelet-bootstrap 用户允许请求证书
防止错误:failed to run Kubelet: cannot create certificate signing request: certificatesigningrequests.certificates.k8s.io is forbidden: User "kubelet-bootstrap" cannot create resource "certificatesigningrequests" in API group "certificates.k8s.io" at the cluster scope
kubectl create clusterrolebinding kubelet-bootstrap \
--clusterrole=system:node-bootstrapper \
--user=kubelet-bootstrap
#输出:clusterrolebinding.rbac.authorization.k8s.io/kubelet-bootstrap created
#删除操作(不要操作):kubectl delete clusterrolebinding kubelet-bootstrap
配置开机启动
cat > /lib/systemd/system/kubelet.service << EOF
[Unit]
Description=Kubernetes Kubelet
After=docker.service
[Service]
EnvironmentFile=/etc/kubernetes/kubelet.conf
ExecStart=/usr/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl start kubelet
systemctl status kubelet
systemctl enable kubelet
加入集群
# 1、查看kubelet 证书请求
执行:kubectl get csr
#输出
NAME AGE SIGNERNAME REQUESTOR CONDITION
node-csr-sg6whHULnO44zm2oK7qf_S9jJUIfOMub93hqTk-0whY 44s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
# 2、批准申请
#注意这里要填上面查出来的证书名 NAME
执行:kubectl certificate approve node-csr-sg6whHULnO44zm2oK7qf_S9jJUIfOMub93hqTk-0whY
输出:certificatesigningrequest.certificates.k8s.io/node-csr-sg6whHULnO44zm2oK7qf_S9jJUIfOMub93hqTk-0whY approved
# 3、再次查看证书
执行:kubectl get csr
#输出、此时CONDITION就不一样了
NAME AGE SIGNERNAME REQUESTOR CONDITION
node-csr-HqitHgM-yDKeM6-7u1xWh-9CvhKEmkoC5dUyLaNglnM 4m46s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Approved,Issued
# 4、查看节点(由于网络插件还没部署、节点会有准备就绪)
kubectl get node
NAME STATUS ROLES AGE VERSION
k8s-master1 NotReady <none> 55s v1.19.11
kube-proxy
参数配置文件
clusterCIDR: 10.254.0.0/16: Service IP 段,与apiserver & controller-manager 的--service-cluster-ip-range 一致
注意:hostnameOverride: k8s-master1 改为实际的节点主机名
cat > /etc/kubernetes/kube-proxy-config.yml << EOF
kind: KubeProxyConfiguration
apiVersion: kubeproxy.config.k8s.io/v1alpha1
bindAddress: 0.0.0.0
metricsBindAddress: 0.0.0.0:10249
clientConnection:
kubeconfig: /etc/kubernetes/kube-proxy.kubeconfig
hostnameOverride: k8s-master1
clusterCIDR: 10.254.0.0/16
EOF
kubeonfig 文件
注意修改ip
KUBE_CONFIG="/etc/kubernetes/kube-proxy.kubeconfig"
KUBE_APISERVER="https://192.168.1.11:6443"
kubectl config set-cluster kubernetes \
--certificate-authority=/etc/kubernetes/pki/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials kube-proxy \
--client-certificate=/etc/kubernetes/pki/kube-proxy.pem \
--client-key=/etc/kubernetes/pki/kube-proxy-key.pem \
--embed-certs=true \
--kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \
--cluster=kubernetes \
--user=kube-proxy \
--kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}
kube-proxy 配置文件
cat > /etc/kubernetes/kube-proxy.conf << EOF
KUBE_PROXY_OPTS="--logtostderr=false \
--v=2 \
--log-dir=/var/log/kubernetes \
--config=/etc/kubernetes/kube-proxy-config.yml"
EOF
配置开机启动
cat > /lib/systemd/system/kube-proxy.service << EOF
[Unit]
Description=Kubernetes Proxy
After=network.target
[Service]
EnvironmentFile=/etc/kubernetes/kube-proxy.conf
ExecStart=/usr/bin/kube-proxy \$KUBE_PROXY_OPTS
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl start kube-proxy
systemctl status kube-proxy
systemctl enable kube-proxy
授权apisertver访问kubelet的权限
mkdir -p $HOME/k8s-install && cd $HOME/k8s-install
cat > apiserver-to-kubelet-rbac.yaml << EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:kube-apiserver-to-kubelet
rules:
- apiGroups:
- ""
resources:
- nodes/proxy
- nodes/stats
- nodes/log
- nodes/spec
- nodes/metrics
- pods/log
verbs:
- "*"
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: system:kube-apiserver
namespace: ""
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:kube-apiserver-to-kubelet
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: kubernetes
EOF
kubectl apply -f apiserver-to-kubelet-rbac.yaml
#输出:
clusterrole.rbac.authorization.k8s.io/system:kube-apiserver-to-kubelet created
clusterrolebinding.rbac.authorization.k8s.io/system:kube-apiserver created
集群管理
kubeconfig 文件
注意修改ip
mkdir -p /root/.kube
KUBE_CONFIG=/root/.kube/config
KUBE_APISERVER="https://192.168.1.11:6443"
kubectl config set-cluster kubernetes \
--certificate-authority=/etc/kubernetes/pki/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials cluster-admin \
--client-certificate=/etc/kubernetes/pki/admin.pem \
--client-key=/etc/kubernetes/pki/admin-key.pem \
--embed-certs=true \
--kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \
--cluster=kubernetes \
--user=cluster-admin \
--kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}
查看集群配置信息
# 查看 :kubectl config view
#输出:
----------------------------------------------
apiVersion: v1
clusters:
- cluster:
certificate-authority-data: DATA+OMITTED
server: https://192.168.1.11:6443
name: kubernetes
contexts:
- context:
cluster: kubernetes
user: cluster-admin
name: default
current-context: default
kind: Config
preferences: {}
users:
- name: cluster-admin
user:
client-certificate-data: REDACTED
client-key-data: REDACTED
查看集群状态
kubectl get cs
#输出
Warning: v1 ComponentStatus is deprecated in v1.19+
NAME STATUS MESSAGE ERROR
scheduler Healthy ok
controller-manager Healthy ok
etcd-0 Healthy {"health":"true"}
etcd-2 Healthy {"health":"true"}
etcd-1 Healthy {"health":"true"}
命令补全工具
yum install -y bash-completion
source /usr/share/bash-completion/bash_completion
#是 Bash 中的进程替换语法,它允许将命令的输出作为文件传递给另一个命令。
#在这里,<(...) 将 kubectl completion bash 命令的输出作为一个临时文件来处理
source <(kubectl completion bash)
echo "source <(kubectl completion bash)" >> ~/.bashrc
Node 节点
需要安装的组件
组件 | 作用 | 关联 |
kubelet | 工作节点代理:运行在每个node节点上的组件,负责管理该节点上的容器。kubelet 会从 API Server 获取调度好的 Pod 信息,并负责容器的创建、启动、停止以及健康检查等。 | 与kube-apiserver个kube-proxy通信 |
kube-proxy | 代理:运行在每个node节点上的组件、负责将来自外部的网络流量路由到工作节点上的pod、他维护每个服务的后端端点列表、并使这些列表将流量路由到正确的pod上 | 与kueb-apiserver与kubelet通信 |
将master节点上的kubelet、kube-proxy相关文件拷贝到node节点
#这里使用分发脚本
#在k8s-master1上操作
# 1、拷贝
xsync /usr/bin/kubelet
xsync /usr/bin/kube-proxy
xsync /lib/systemd/system/kubelet.service
xsync /lib/systemd/system/kube-proxy.service
xsync /etc/kubernetes/kubelet* #kubelet.conf kubelet-config.yml kubelet.kubeconfig
xsync /etc/kubernetes/kube-proxy* #kube-proxy.conf kube-proxy-config.yml kube-proxy.kubeconfig
xsync /etc/kubernetes/pki/
xsync /etc/kubernetes/bootstrap.kubeconfig
修改配置
在k8s-node01和k8s-node02上操作
# 1、删除证书申请审批后自动生成的文件、后面当节点加入集群后重新生成(在node01和k8s-node02都要删掉这些文件)
rm /etc/kubernetes/kubelet.kubeconfig
rm /etc/kubernetes/pki/kubelet*
# 创建日志目录
mkdir -p /var/log/kubernetes
# 按实际节点名称修改
#在k8s-node01上
# kubelet
vi /etc/kubernetes/kubelet.conf
--hostname-override=k8s-node01
# kube-proxy
vi /etc/kubernetes/kube-proxy-config.yml
hostnameOverride: k8s-node01
#在k8s-node02上
# kubelet
vi /etc/kubernetes/kubelet.conf
--hostname-override=k8s-node02
# kube-proxy
vi /etc/kubernetes/kube-proxy-config.yml
hostnameOverride: k8s-node02
配置开机自启
systemctl daemon-reload
systemctl start kubelet kube-proxy
systemctl status kubelet kube-proxy
systemctl enable kubelet kube-proxy
#此时看到systemctl status kube-proxy 状态提示找不到节点
6月 05 21:26:05 node-2 systemd[1]: Started Kubernetes Proxy.
6月 05 21:26:05 node-2 kube-proxy[2819]: E0605 21:26:05.490756 2819 node.go:125] Failed to retrieve node info: nodes "node-2" not found
6月 05 21:26:06 node-2 kube-proxy[2819]: E0605 21:26:06.518320 2819 node.go:125] Failed to retrieve node info: nodes "node-2" not found
6月 05 21:26:08 node-2 kube-proxy[2819]: E0605 21:26:08.642706 2819 node.go:125] Failed to retrieve node info: nodes "node-2" not found
加入集群(要在master节点去执行)
# 1、获取节点信息(这是node申请加入集群的api请求)
kubectl get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
node-csr-IO9gpTw-HqotJm7ypcjZVJSBnXvXQEqOrDQx4XqwBhU 3s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
node-csr-Wdwu_hc8ztpUl1iVx9_6I-4HYlRXOg5kHsPaIouOiPs 87s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
node-csr-sg6whHULnO44zm2oK7qf_S9jJUIfOMub93hqTk-0whY 57m kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Approved,Issued
# 2、批准接入(将node节点加入集群)
[root@master-1 ~]# kubectl certificate approve node-csr-IO9gpTw-HqotJm7ypcjZVJSBnXvXQEqOrDQx4XqwBhU
certificatesigningrequest.certificates.k8s.io/node-csr-FKBpaWpZV9gcxF4danKlK76iNdMLTNm0S0c84PlzxuY approved
[root@master-1 ~]# kubectl certificate approve node-csr-Wdwu_hc8ztpUl1iVx9_6I-4HYlRXOg5kHsPaIouOiPs
certificatesigningrequest.certificates.k8s.io/node-csr-YHa0S8tzHw5pZpX98AYsziv9aGO0ZqRG-Y962IF-hVs approved
# 3、查看集群节点
#这里STATUS 为NotReady 状态是预期的,后续安装了网络插件后就好
[root@master-1 ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master1 NotReady <none> 59m v1.19.11
k8s-node01 NotReady <none> 7s v1.19.11
k8s-node02 NotReady <none> 28s v1.19.11
# 4. 设置标签,即更改节点角色
kubectl label node k8s-master1 node-role.kubernetes.io/master=
kubectl label node k8s-node01 node-role.kubernetes.io/node=
kubectl label node k8s-node02 node-role.kubernetes.io/node=
#5、在查看节点:kubectl get node
#此时ROLES改变了
NAME STATUS ROLES AGE VERSION
k8s-master1 NotReady master 63m v1.19.11
k8s-node01 NotReady node 3m44s v1.19.11
k8s-node02 NotReady node 4m5s v1.19.11
# 6. 设置污点:使master节点无法创建pod
kubectl taint nodes k8s-master1 node-role.kubernetes.io/master=:NoSchedule
#输出:node/k8s-master1 tainted
# 7、查看k8s-master1节点详细信息中的Taints:
kubectl describe node k8s-master1
--------------------------------------------------------------
Taints: node-role.kubernetes.io/master:NoSchedule #标记master节点不被调度、防止普通 Pod 被调度到 Master 节点上,以确保 Master 节点资源用于集群管理任务
node.kubernetes.io/not-ready:NoSchedule #标记表明节点当前不可用,可能是因为节点尚(ready)未完成启动或因某些问题而导致节点无法被调度器接受
# 8、删除污点:
- kubectl edit node k8s-master1
- 找到Taints :删掉不要的污点即可
CNI 网络
# 节点状态
kubectl get node
NAME STATUS ROLES AGE VERSION
k8s-master1 NotReady master 49m v1.19.11
k8s-node01 NotReady node 3m45s v1.19.11
k8s-node02 NotReady node 3m49s v1.19.11
# 检查日志,发现网络插件未安装
journalctl -u kubelet -f
Jun 02 14:24:29 k8s-master1 kubelet[75636]: W0602 14:24:29.172144 75636 cni.go:239] Unable to update cni config: no networks found in /etc/cni/net.d
Jun 02 14:24:32 k8s-master1 kubelet[75636]: E0602 14:24:32.958021 75636 kubelet.go:2129] Container runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady message:docker: network plugin is not ready: cni config uninitialized
其中涉及的IP段,要与 kube-controller-manager中 “–cluster-cidr” 一致
安装CNI网络插件
注意:所有节点都要操作
mkdir -p $HOME/k8s-install/network && cd $_
wget https://github.com/containernetworking/plugins/releases/download/v0.9.1/cni-plugins-linux-amd64-v0.9.1.tgz
mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.9.1.tgz -C /opt/cni/bin
#关闭SELinux
- 临时关闭:sudo setenforce 0
- 若要永久禁用 SELinux,需要编辑 /etc/selinux/config 文件:
- 找到 SELINUX=enforcing 或 SELINUX=permissive 的行,将其改为:SELINUX=disabled
方案一:calico
Calico是一个纯三层的数据中心网络方案,是目前Kubernetes主流的网络方案。
只需再k8s-master1节点操作
mkdir -p $HOME/k8s-install/network && cd $HOME/k8s-install/network
# 1. 下载插件
curl https://docs.projectcalico.org/v3.20/manifests/calico.yaml -O
#注意:这里我使用 wget https://docs.projectcalico.org/manifests/calico.yaml 下载的calico.yaml中的 policy/v1 与k8s版本(policy/v1beta)对不上、所以一直报错
#参考:https://blog.csdn.net/qq_46237746/article/details/125453966
# CIDR的值,与 kube-controller-manager中“--cluster-cidr=10.244.0.0/16” 一致
#2、 修改
vi calico.yaml
----------------------------------------------------------------------------------------------
4598 # The default IPv4 pool to create on startup if none exists. Pod IPs will be
4599 # chosen from this range. Changing this value after installation will have
4600 # no effect. This should fall within `--cluster-cidr`.
4601 - name: CALICO_IPV4POOL_CIDR
4602 value: "10.244.0.0/16"
# 3、安装网络插件 pod
kubectl apply -f calico.yaml
# 4、 查看(要等一会)
#看到READY 都跑起来说明已正常
- kubectl get pods -n kube-system -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
calico-kube-controllers-577f77cb5c-b9hbx 1/1 Running 0 3m46s 10.244.58.193 k8s-node02 <none> <none>
calico-node-n9945 1/1 Running 0 3m46s 192.168.1.12 k8s-node01 <none> <none>
calico-node-qcjq8 1/1 Running 0 3m46s 192.168.1.13 k8s-node02 <none> <none>
calico-node-t56j9 1/1 Running 0 3m46s 192.168.1.11 k8s-master1 <none> <none>
# 5、查看节点 node
- kubectl get node
#此时STATUS 都为Ready
NAME STATUS ROLES AGE VERSION
k8s-master1 Ready master 3h23m v1.19.11
k8s-node01 Ready node 143m v1.19.11
k8s-node02 Ready node 143m v1.19.11
方案二:fannel
只需再k8s-master1节点操作
mkdir -p $HOME/k8s-install/network && cd $HOME/k8s-install/network
wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
kubectl apply -f kube-flannel.yml
vi kube-flannel.yml
"Network": "10.244.0.0/16",
kubectl get pod -n kube-system
NAME READY STATUS RESTARTS AGE
kube-flannel-ds-8qnnx 1/1 Running 0 10s
kube-flannel-ds-979lc 1/1 Running 0 16m
kube-flannel-ds-kgmgg 1/1 Running 0 16m
kubectl get node
NAME STATUS ROLES AGE VERSION
k8s-master1 Ready master 85m v1.19.11
k8s-node01 Ready node 40m v1.19.11
k8s-node02 Ready node 40m v1.19.11
Addons
CoreDNS
CoreDNS用于集群内部Service名称解析
mkdir -p $HOME/k8s-install/coredns && cd $HOME/k8s-install/coredns
wget https://raw.githubusercontent.com/coredns/deployment/master/kubernetes/coredns.yaml.sed
wget https://raw.githubusercontent.com/coredns/deployment/master/kubernetes/deploy.sh
chmod +x deploy.sh
export CLUSTER_DNS_SVC_IP="10.254.0.2"
export CLUSTER_DNS_DOMAIN="cluster.local"
./deploy.sh -i ${CLUSTER_DNS_SVC_IP} -d ${CLUSTER_DNS_DOMAIN} | kubectl apply -f -
# 查询状态
kubectl get pods -n kube-system | grep coredns
coredns-746fcb4bc5-nts2k 1/1 Running 0 6m2s
# 验证 busybox1.33.1有问题
kubectl run -it --rm dns-test --image=busybox:1.28.4 /bin/sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes #这是进入到容器中输入命令:nslookup kubernetes
Server: 10.254.0.2
Address 1: 10.254.0.2 kube-dns.kube-system.svc.cluster.local
Name: kubernetes
Address 1: 10.254.0.1 kubernetes.default.svc.cluster.local
DNS问题排查
# dns service
kubectl get svc -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns ClusterIP 10.254.0.2 <none> 53/UDP,53/TCP,9153/TCP 4m52s
# endpoints 是否正常
kubectl get endpoints kube-dns -n kube-system
NAME ENDPOINTS AGE
kube-dns 10.244.58.194:53,10.244.58.194:53,10.244.58.194:9153 5m5s
# coredns 增加解析日志
CoreDNS 配置参数说明:
errors: 输出错误信息到控制台。
health:CoreDNS 进行监控检测,检测地址为 http://localhost:8080/health 如果状态为不健康则让 Pod 进行重启。
ready: 全部插件已经加载完成时,将通过 endpoints 在 8081 端口返回 HTTP 状态 200。
kubernetes:CoreDNS 将根据 Kubernetes 服务和 pod 的 IP 回复 DNS 查询。
prometheus:是否开启 CoreDNS Metrics 信息接口,如果配置则开启,接口地址为 http://localhost:9153/metrics
forward:任何不在Kubernetes 集群内的域名查询将被转发到预定义的解析器 (/etc/resolv.conf)。
cache:启用缓存,30 秒 TTL。
loop:检测简单的转发循环,如果找到循环则停止 CoreDNS 进程。
reload:监听 CoreDNS 配置,如果配置发生变化则重新加载配置。
loadbalance:DNS 负载均衡器,默认 round_robin。
# 编辑 coredns 配置
kubectl edit configmap coredns -n kube-system
-----------------------------------------------------
# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving this file will be
# reopened with the relevant failures.
#
apiVersion: v1
data:
Corefile: |
.:53 {
log #添加
errors
health {
lameduck 5s
}
ready
kubernetes cluster.local in-addr.arpa ip6.arpa {
fallthrough in-addr.arpa ip6.arpa
}
prometheus :9153
forward . /etc/resolv.conf {
max_concurrent 1000
}
cache 30
loop
reload
loadbalance
}
kind: ConfigMap
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"v1","data":{"Corefile":".:53 {\n errors\n health {\n lameduck 5s\n }\n ready\n kubernetes cluster.local in-addr.arpa ip6.arpa {\n fallthrough in-addr.arpa ip6.arpa\n }\n prometheus :9153\n forward . /etc/resolv.conf {\n max_concurrent 1000\n }\n cache 30\n loop\n reload\n loadbalance\n}\n"},"kind":"ConfigMap","metadata":{"annotations":{},"name":"coredns","namespace":"kube-system"}}
creationTimestamp: "2024-06-30T10:39:52Z"
name: coredns
namespace: kube-system
resourceVersion: "33556"
selfLink: /api/v1/namespaces/kube-system/configmaps/coredns
uid: 56e2cf15-0341-4aa6-9abe-2325567f46f2
回滚操作:
wget https://raw.githubusercontent.com/coredns/deployment/master/kubernetes/rollback.sh
chmod +x rollback.sh
export CLUSTER_DNS_SVC_IP="10.254.0.2"
export CLUSTER_DNS_DOMAIN="cluster.local"
./rollback.sh -i ${CLUSTER_DNS_SVC_IP} -d ${CLUSTER_DNS_DOMAIN} | kubectl apply -f -
kubectl delete --namespace=kube-system deployment coredns
Dashboard
这是k8s web管理界面
mkdir -p $HOME/k8s-install/dashboard && cd $HOME/k8s-install/dashboard
# 1. 下载并安装
curl https://raw.githubusercontent.com/kubernetes/dashboard/v2.2.0/aio/deploy/recommended.yaml -o dashboard.yaml
kubectl apply -f dashboard.yaml
# 2. 检查运行状态
kubectl get pods -n kubernetes-dashboard -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
dashboard-metrics-scraper-79c5968bdc-bcl8x 1/1 Running 0 24s 10.244.58.196 k8s-node02 <none> <none>
kubernetes-dashboard-9f9799597-9vc5m 1/1 Running 0 24s 10.244.159.129 k8s-master1 <none> <none>
# 3. 检查服务状态
kubectl get svc -n kubernetes-dashboard -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
dashboard-metrics-scraper ClusterIP 10.254.95.79 <none> 8000/TCP 69s k8s-app=dashboard-metrics-scraper
kubernetes-dashboard ClusterIP 10.254.100.239 <none> 443/TCP 69s k8s-app=kubernetes-dashboard
# 4. 服务改为NodePort方式
kubectl edit svc kubernetes-dashboard -n kubernetes-dashboard
type: ClusterIP => type: NodePort #让外部直接通过node 的ip:端口去访问
#5. 再查看
[root@k8s-master1 dashboard]# kubectl get svc -n kubernetes-dashboard -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
dashboard-metrics-scraper ClusterIP 10.254.95.79 <none> 8000/TCP 2m35s k8s-app=dashboard-metrics-scraper
kubernetes-dashboard NodePort 10.254.100.239 <none> 443:31099/TCP 2m35s k8s-app=kubernetes-dashboard
# 6. 创建service account并绑定默认cluster-admin管理员集群角色:
kubectl create serviceaccount dashboard-admin -n kube-system #创建角色
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin #绑定角色
# 7. 获取访问 token
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')
Name: dashboard-admin-token-ggx45
Namespace: kube-system
Labels: <none>
Annotations: kubernetes.io/service-account.name: dashboard-admin
kubernetes.io/service-account.uid: f4bbc842-c178-4dc5-a37f-2e98d58bc756
Type: kubernetes.io/service-account-token
Data
====
ca.crt: 1310 bytes
namespace: 11 bytes
token: eyJhbGciOiJSUzI1NiIsImtpZCI6IlJqcGoyRGNSVlpPeEw5QzdJdllLZ1NRY2tMbThyN1ZyNzJIOFVfS3B3NjgifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtYWRtaW4tdG9rZW4tZ2d4NDUiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkLWFkbWluIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiZjRiYmM4NDItYzE3OC00ZGM1LWEzN2YtMmU5OGQ1OGJjNzU2Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZC1hZG1pbiJ9.D1Zxhsky7h_k0cGxK9cHAd-YC4hlUlQ7j5s6oAW7ztEUeGi8GG4kSBslc1DTcvmkzA_0kVUkIy38Oi9arQ75HOhub9LIF-pzH8aGor0c9CMNR_XQi-l288Q8_u9_CBcR9eNtITSAmqmuaKCrTw2Y5hzVk_s59M6Tq5QaQ-hth--3U0CtBUEdX6JNRwhr1RX0LkQRY4E6veawUVS1QdVJ3-VVPRUU2A15vkNASwcJSpbzdywOpjBpRQv6NSpXAyIeq2BvyJfAaXax3Wfq7wOnMx4mzVaQXHkRCyJEd_6P73hFxdYnxkLbUFkj02Rt8VcRZfEeC2cO1M_-wrOUon_-Zw
# 8. 访问web
https://192.168.1.11:31099
高可用-新增master节点
角色 | ip | 组件 | 备注 |
k8s-master1 | 192.168.1.11 | etcd, api-server, controller-manager, scheduler, kubelet, kube-proxy, docker | |
k8s-node01 | 192.168.1.12 | etcd, kubelet, kube-proxy, docker | |
k8s-node02 | 192.168.1.13 | etcd, kubelet, kube-proxy, docker | |
k8s-master2 | 192.168.1.14 | etcd, api-server, controller-manager, scheduler, kubelet, kube-proxy, docker | 新增节点 |
准备操作(k8s-Master1)
kube-apiserver 证书更新
在新增节点的IP段未在证书中时需要如下操作:
mkdir -p /root/ssl && cd /root/ssl
# 1. 证书签名请求文件
cat > apiserver-csr.json <<EOF
{
"CN": "kubernetes",
"hosts": [
"127.0.0.1",
"localhost",
"192.168.1.1",
"192.168.1.2",
"192.168.1.3",
"192.168.1.11",
"192.168.1.12",
"192.168.1.13",
"192.168.1.14",
"192.168.1.15",
"10.254.0.1",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
}
EOF
# 2. 生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes apiserver-csr.json | cfssljson -bare apiserver
-----------------------
apiserver.csr
apiserver-key.pem
apiserver.pem
-----------------------
# 3. 证书更新(k8s-master1)
cp apiserver*.pem /etc/kubernetes/pki #覆盖原证书
#将证书拷贝到node节点
scp apiserver*.pem root@k8s-node01:/etc/kubernetes/pki
scp apiserver*.pem root@k8s-node02:/etc/kubernetes/pki
#node节点授权(node节点操作)
chown root:root /etc/kubernetes/pki/apiserver*.pem
# 4. 重启 apiserver (k8s-master1上操作)
systemctl restart kube-apiserver
systemctl status kube-apiserver
增加主机
在 k8s-master1, k8s-node01, k8s-node02 上制作
echo '192.168.1.14 k8s-master2' >> /etc/hosts
扩容 Master
初始化
# 1. 修改主机名
hostnamectl set-hostname k8s-master2
# 2. 主机名解析
cat >> /etc/hosts <<EOF
192.168.1.11 k8s-master1
192.168.1.12 k8s-node01
192.168.1.13 k8s-node02
192.168.1.14 k8s-master2
EOF
# 3. 禁用 swap
swapoff -a && sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab
# 4. 将桥接的IPv4流量传递到iptables的链
cat > /etc/sysctl.d/k8s.conf << EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
sysctl --system
# 5. 域名解析
echo "nameserver 8.8.8.8" >> /etc/resolv.conf
# 6. 时间同步
yum install ntpdate -y
ntpdate ntp1.aliyun.com
crontab -e
*/30 * * * * /usr/sbin/ntpdate-u ntp1.aliyun.com >> /var/log/ntpdate.log 2>&1
# 7. 日志目录
mkdir -p /var/log/kubernetes
# 8. 禁用SELiunx
临时:sudo setenforce 0
若要永久禁用 SELinux,需要编辑 /etc/selinux/config 文件:找到 SELINUX=enforcing 或 SELINUX=permissive 的行,将其改为:SELINUX=disabled
克隆
#k8s-master1 上执行
# 1. 将下列文件分发到k8s-master2上(yum install -y rsync)
#注意!!!!:这里如果你使用的是分发脚本、需要改一下分发脚本中的主机、不要分发到之前node的主机上去了导致覆盖
xsync /usr/bin/kube*
xsync /lib/systemd/system/kube*.service
xsync /etc/kubernetes
xsync /root/.kube/config
xsync /usr/local/bin/docker*
xsync /usr/local/bin/runc
xsync /usr/local/bin/containerd*
xsync /usr/local/bin/ctr
xsync /etc/docker
xsync /lib/systemd/system/docker.service
#或者使用scp拷贝(这个将master1上的文件拷贝到master2上的对应目录即可)
- 先压缩
tar zcvf master-node-clone.tar.gz /usr/bin/kube* /lib/systemd/system/kube*.service /etc/kubernetes /root/.kube/config /usr/local/bin/docker* /usr/local/bin/runc /usr/local/bin/containerd* /usr/local/bin/ctr /etc/docker /lib/systemd/system/docker.service
- 再scp到k8s-master2上
scp master-node-clone.tar.gz root@192.168.80.49:/root
----------------------------------------------------------------------------------------
# 2. k8s-master2 执行
rm -f /etc/kubernetes/kubelet.kubeconfig
rm -f /etc/kubernetes/pki/kubelet*
更新配置
在k8s-master2上执行
#1.修改
vi /etc/kubernetes/kube-apiserver.conf
--bind-address=192.168.1.14 \
--advertise-address=192.168.1.14 \
#2. 修改配置文件
sed -i 's#k8s-master1#k8s-master2#' /etc/kubernetes/*
sed -i 's#192.168.1.11:6443#192.168.1.14:6443#' /etc/kubernetes/*
#遇到:sed: 无法编辑文件 /etc/kubernetes/pki: 不是一个普通文件 不用管、这是一个目录
#3.修改
vi /root/.kube/config
server: https://192.168.1.14:6443
#4. 开机启动
systemctl daemon-reload
systemctl start docker kube-apiserver kube-controller-manager kube-scheduler kubelet kube-proxy
systemctl status docker kube-apiserver kube-controller-manager kube-scheduler kubelet kube-proxy
systemctl enable docker kube-apiserver kube-controller-manager kube-scheduler kubelet kube-proxy
查看集群状态
#kubectl get cs
Warning: v1 ComponentStatus is deprecated in v1.19+
NAME STATUS MESSAGE ERROR
scheduler Healthy ok
controller-manager Healthy ok
etcd-1 Healthy {"health":"true"}
etcd-2 Healthy {"health":"true"}
etcd-0 Healthy {"health":"true"}
加入集群
# 1、查看api申请
kubectl get csr
NAME AGE SIGNERNAME
node-csr-nohunS7Jmlb9Qu3ncV5TszVdoETyt1QiW440rAuWrec 2m20s kubernetes.io/kube-apiserver-client-kubel
#同意加入集群
- kubectl certificate approve node-csr-nohunS7Jmlb9Qu3ncV5TszVdoETyt1QiW440rAuWrec
#查看node
kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master1 Ready master 6h3m v1.19.11
k8s-master2 NotReady <none> 21s v1.19.11
k8s-node01 Ready node 5h3m v1.19.11
k8s-node02 Ready node 5h3m v1.19.11
打上标签和设置污点
#设置标签
kubectl label node k8s-master2 node-role.kubernetes.io/master=
#输出:node/k8s-master2 labeled
#查看
kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master1 Ready master 6h6m v1.19.11
k8s-master2 NotReady master 3m9s v1.19.11
k8s-node01 Ready node 5h6m v1.19.11
k8s-node02 Ready node 5h6m v1.19.11
# 设置污点
kubectl taint nodes k8s-master2 node.role.kubernetes.io/master=:NoSchedule
#输出:node/k8s-master2 tainted
# 节点信息
kubectl get nodes --show-labels
NAME STATUS ROLES AGE VERSION LABELS
k8s-master1 Ready master 6h8m v1.19.11 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=k8s-master1,kubernetes.io/os=linux,node-role.kubernetes.io/master=
k8s-master2 NotReady master 5m51s v1.19.11 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=k8s-master2,kubernetes.io/os=linux,node-role.kubernetes.io/master=
k8s-node01 Ready node 5h9m v1.19.11 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=k8s-node01,kubernetes.io/os=linux,node-role.kubernetes.io/node=
k8s-node02 Ready node 5h9m v1.19.11 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=k8s-node02,kubernetes.io/os=linux,node-role.kubernetes.io/node=
高可用的负载均衡
Nginx
: 主流Web服务和反向代理服务器,这里用四层实现对apiserver实现负载均衡。
Keepalived
: 主流高可用软件,基于VIP绑定实现服务器双机热备。Keepalived主要根据Nginx运行状态判断是否需要故障转移(漂移VIP),例如当Nginx主节点挂掉,VIP会自动绑定在Nginx备节点,从而保证VIP一直可用,实现Nginx高可用。
服务器规划:
角色 | ip | 组件 |
k8s-master1 | 192.168.1.11 | kube-apiserver |
k8s-master2 | 192.168.1.14 | kube-apiserver |
k8s-loadbalancer1 | 192.168.1.21 | nginx, keepalived |
k8s-loadbalancer2 | 192.168.1.22 | nginx, keepalived |
VIP | 192.168.1.250 | 虚拟ip(不是主机) |
安装软件
#设置主机名:
hostnamectl set-hostname k8s-loadbalancer1
hostnamectl set-hostname k8s-loadbalancer2
#安装软件(两台都要安装)
yum install nginx keepalived -y
配置nginx
user: 可以改为root
cat > /etc/nginx/nginx.conf << "EOF"
user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log;
pid /run/nginx.pid;
include /usr/share/nginx/modules/*.conf;
events {
worker_connections 1024;
}
http {
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';
upstream k8s-apiserver{
server 192.168.1.11:6443; # Master1 APISERVER IP:PORT
server 192.168.1.14:6443; # Master2 APISERVER IP:PORT
}
access_log /var/log/nginx/access.log main;
sendfile on;
tcp_nopush on;
tcp_nodelay on;
keepalive_timeout 65;
types_hash_max_size 2048;
include /etc/nginx/mime.types;
include /etc/nginx/conf.d/*.conf;
default_type application/octet-stream;
server {
listen 16443;
server_name localhost;
location / {
proxy_pass http://k8s-apiserver; #如果这里需要https就加上证书即可
}
}
}
keepalived 配置 (master)
cat > /etc/keepalived/keepalived.conf << EOF
! Configuration File for keepalived
global_defs {
#keepalived机器标识,无特殊作用,一般为机器名
router_id LVS_DEVEL
}
# 检查nginx状态的脚本,健康监测脚本、chk_nginx为脚本名
vrrp_script chk_nginx {
script "/etc/keepalived/nginx_check.sh" # 脚本路径
interval 2 # 脚本执行间隔时间
weight -20
}
vrrp_instance VI_1 {
state BACKUP
interface ens160 # 当前进行vrrp通讯的网络接口卡(当前centos的网卡) 用ifconfig查看你具体的网卡
virtual_router_id 100 # 虚拟路由编号,主从要一至
priority 100 # 优先级,数值越大,获取处理请求的优先级越高 master要大于slave
advert_int 1 ##主备之间通信检查的时间间隔,单位秒
unicast_src_ip 192.168.1.21 # 本机ip
#检查脚本,与vrrp_script对应
track_script {
chk_nginx
}
##keepalived之间认证类型为密码
authentication {
auth_type PASS # 指定认证方式。PASS简单密码认证(推荐),AH:IPSEC认证(不推荐)
auth_pass 1111 # 指定认证所使用的密码。最多8位
}
##虚拟IP池
virtual_ipaddress {
# 指定VIP地址、访问地址、虚拟ip随意定义
192.168.1.250/24
}
}
EOF
keepalived 配置 (slave)
cat > /etc/keepalived/keepalived.conf << EOF
! Configuration File for keepalived
global_defs {
#keepalived机器标识,无特殊作用,一般为机器名
router_id LVS_DEVEL
}
# 检查nginx状态的脚本,健康监测脚本、chk_nginx为脚本名
vrrp_script chk_nginx {
script "/etc/keepalived/nginx_check.sh" # 脚本路径
interval 2 # 脚本执行间隔时间
weight -20
}
vrrp_instance VI_1 {
state BACKUP
interface ens160 # 当前进行vrrp通讯的网络接口卡(当前centos的网卡) 用ifconfig查看你具体的网卡
virtual_router_id 100 # 虚拟路由编号,主从要一至
priority 90 # 优先级,数值越大,获取处理请求的优先级越高 master要大于slave
advert_int 1 ##主备之间通信检查的时间间隔,单位秒
unicast_src_ip 192.168.1.22 # 本机ip
#检查脚本,与vrrp_script对应
track_script {
chk_nginx
}
##keepalived之间认证类型为密码
authentication {
auth_type PASS # 指定认证方式。PASS简单密码认证(推荐),AH:IPSEC认证(不推荐)
auth_pass 1111 # 指定认证所使用的密码。最多8位
}
##虚拟IP池
virtual_ipaddress {
# 指定VIP地址、访问地址、虚拟ip随意定义
192.168.1.250/24
}
}
EOF
keepalived 检查脚本
cat > /etc/keepalived/check_nginx.sh << "EOF"
#!/bin/bash
count=$(ss -antp |grep 16443 |egrep -cv "grep|$$")
if [ "$count" -eq 0 ];then
exit 1
else
exit 0
fi
EOF
启动服务
systemctl daemon-reload
systemctl start nginx keepalived
systemctl enable nginx keepalived
状态检查
curl -k http://192.168.1.250:16443/version
{
"major": "1",
"minor": "19",
"gitVersion": "v1.19.11",
"gitCommit": "c6a2f08fc4378c5381dd948d9ad9d1080e3e6b33",
"gitTreeState": "clean",
"buildDate": "2021-05-12T12:19:22Z",
"goVersion": "go1.15.12",
"compiler": "gc",
"platform": "linux/amd64"
}
Worker Node 连接到 LB VIP
sed -i 's#192.168.1.11:6443#192.168.1.250:16443#' /etc/kubernetes/*
systemctl restart kubelet kube-proxy
删除节点
# 1. k8s-master2 上,停止kubelet进程
systemctl stop kubelet
# 2. 检查 k8s-master2 是否已下线
kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master1 Ready master 40h v1.19.11
k8s-master2 NotReady master 12h v1.19.11
k8s-node01 Ready node 40h v1.19.11
k8s-node02 Ready node 40h v1.19.11
# 3. 删除节点
kubectl drain k8s-master2
node/k8s-master2 cordoned
error: unable to drain node "k8s-master2", aborting command...
There are pending nodes to be drained:
k8s-master2
error: cannot delete DaemonSet-managed Pods (use --ignore-daemonsets to ignore): kube-system/calico-node-lwj2r
# 4. 强制下线
kubectl drain k8s-master2 --ignore-daemonsets
node/k8s-master2 already cordoned
WARNING: ignoring DaemonSet-managed Pods: kube-system/calico-node-lwj2r
node/k8s-master2 drained
# 5. 下线状态
kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master1 Ready master 40h v1.19.11
k8s-master2 Ready,SchedulingDisabled master 12h v1.19.11
k8s-node01 Ready node 39h v1.19.11
k8s-node02 Ready node 39h v1.19.11
# 6. 恢复操作 (如有必要)
kubectl uncordon k8s-master2
node/k8s-master2 uncordoned
kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master1 Ready master 40h v1.19.11
k8s-master2 Ready master 12h v1.19.11
k8s-node01 Ready node 39h v1.19.11
k8s-node02 Ready node 39h v1.19.11
# 7. 彻底删除
kubectl delete node k8s-master2
kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master1 Ready master 41h v1.19.11
k8s-node01 Ready node 40h v1.19.11
k8s-node02 Ready node 40h v1.19.11