摘要:
定义: 割点:将原图中的某一点以及它所连的边删除后,原图不连通。 桥:将原图中的某一边删除后,原图不连通。 边双连通分量:原图中意删除一边后还连通的极大连通子图。 点双连通分量:原图中任意删除一点后还连通的极大连通子图。 求法: 割点: 考虑原图的 dfs 生成树,对于树边更新 : \(low[u] 阅读全文
摘要:
定义: 欧拉路径:指图中的一条路径,使得所有边都被经过且只经过一次 欧拉回路:指图中的一条欧拉路径,且起点和终点相同。 欧拉图:指有欧拉回路的图 半欧拉图:指有欧拉路径但没有欧拉回路的图 性质: 1.如果一个无向图是欧拉图,那么所有节点的度数均为偶数 2.如果一个无向图是半欧拉图,那么除了两个节点的 阅读全文
摘要:
定义: 强连通指的是对于一个有向图,每个点都有路径到另外一个点。 强连通分量则指的是对于一个图,它的极大强连通子图。 tanjan 求法: 对于一个图,考虑他的 dfs 生成树(即为对原图进行 dfs 的一棵树)。 那么对于这棵树,搜索时会出现四种边: 树枝边:搜索到没被访问过的节点,且在树中是当前 阅读全文
摘要:
笛卡尔树实际上就是对于多个二元组 \((k_i,w_i)\) 的一棵树,使其所有 \(k\) 值满足二叉搜索树的性质,且所有 \(w\) 值都满足小根堆的性质。 在构建时,对于右链上的元素,自底向上一定是 \(w\) 值由小到大的,且一定 \(k\) 值从小到大。 所以我们按 \(k\) 值从小到大 阅读全文
摘要:
容斥原理: 容斥原理是一种在知道所有集合之间的交,求集合之间的并的数学方法。(注:交即为两个集合之间相同的部分,记作 \(|A| \cap |B|\) ) problem: 设 \(U\) 中元素有 \(n\) 种不同的属性,而第 \(i\) 种属性称为 \(P_i\),拥有属性 \(P_i\) 的 阅读全文
摘要:
link 树同构是树哈希与换根 dp 的结合。 树哈希是哈希中的一个种类,这里先给出哈希函数: \[\operatorname{treehash}(u)=\sum \operatorname{xorshift}(\operatorname{treehash}(v)) \]这里使用 unsigned 阅读全文