洛谷 P7016 [CERC2013]Captain Obvious and the Rabbit-Man 题解
一、题目:
二、题目:
这道题的官方题解秀了我一脸。
设多项式
\[\begin{aligned}
A(x)&=(x-1)(x-2)(x-3)(x-5)\cdots(x-F_k)\\
&=x^k+b_1x^{k-1}+b_2x^{k-2}+\cdots+b_{k-1}x+b_k
\end{aligned}
\]
注意到
\[\begin{aligned}
A(1)=1^k+b_1\times1^{k-1}+b_2\times1^{k-2}+\cdots+b_k=0\\
A(2)=2^k+b_1\times2^{k-1}+b_2\times2^{k-2}+\cdots+b_k=0\\
A(3)=3^k+b_1\times 3^{k-1}+b_2\times 3^{k-2}+\cdots +b_k=0\\
A(5)=5^k+b_1\times 5^{k-1}+b_2\times 5^{k-2}+\cdots +b_k=0\\
\end{aligned}
\]
即
\[\forall i\in[1,k],A(F_i)=F_i^k+b_1F_i^{k-1}+b_2F_i^{k-2}+\cdots+b_k=0
\]
等式两边同时乘以 \(a_iF_i\),得
\[a_iF_iA(F_i)=a_iF_i^{k+1}+b_1a_iF_i^{k}+b_2a_iF_i^{k-1}+\cdots+b_ka_iF_i=0
\]
累加,得
\[\sum\limits_{i=1}^kF_ia_iA(F_i)=\sum\limits_{i=1}^{k}a_iF_i^{k+1}+b_1\sum\limits_{i=1}^ka_iF_i^{k}+\cdots+b_k\sum\limits_{i=1}^ka_iF_i=0
\]
即
\[p(k+1)+b_1p(k)+b_2p(k-1)+\cdots+b_kp(1)=0
\]
这题结束了,时间复杂度就是求出 \(A(x)\) 的系数 \(b\) 的时间复杂度,即 \(O(k^2)\)。
三、代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define FILEIN(s) freopen(s, "r", stdin)
#define FILEOUT(s) freopen(s, "w", stdout)
#define mem(s, v) memset(s, v, sizeof s)
inline int read(void) {
int x = 0, f = 1; char ch = getchar();
while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); }
while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
return f * x;
}
const int MAXK = 4005;
int MOD, K;
long long f[MAXK];
struct Polynomial {
int n;
long long a[MAXK];
Polynomial() { n = 0; mem(a, 0); }
inline friend Polynomial operator *(const Polynomial &A, const Polynomial &B) {
Polynomial res; res.n = A.n + B.n;
for (int i = 0; i <= A.n; ++ i)
for (int j = 0; j <= B.n; ++ j)
(res.a[i + j] += A.a[i] * B.a[j] % MOD) %= MOD;
return res;
}
};
inline void prework(void) {
f[1] = 1; f[2] = 2;
for (int i = 3; i <= K; ++ i) f[i] = (f[i - 1] + f[i - 2]) % MOD;
}
int main() {
int T = read();
while (T --) {
K = read(); MOD = read();
prework();
Polynomial res; res.n = 0; res.a[0] = 1;
for (int i = 1; i <= K; ++ i) {
Polynomial now; now.n = 1; now.a[0] = -f[i]; now.a[1] = 1;
res = res * now;
}
long long ans = 0;
for (int i = 1; i <= K; ++ i) {
long long p = read();
(ans += p * res.a[i - 1] % MOD) %= MOD;
}
ans = -ans;
if (ans < 0) ans += MOD;
printf("%lld\n", ans);
}
return 0;
}