随笔 - 37,  文章 - 0,  评论 - 0,  阅读 - 10013

使用response_model参数,即可在以下路径参数中声明响应模型:

  • @app.get()
  • @app.put()
  • @app.post()
  • @app.delete()
from typing import List, Optional
from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Item(BaseModel):
    name: str
    description: Optional[str] = None
    price: float
    tax: Optional[float] = None
    tags: List[str] = []
    
@app.post("/items/", response_model=Item)
async def create_item(item: Item):
    return item

注意:response_model是装饰器方法的参数,与之前的参数和请求体不同,他不是路径操作函数的参数。

response_model接收的类型与声明Pydantic模型属性的类型相同,可以是Pydantic模型,也可以是Pydantic模型列表,例如:List[Item]

返回相同的输入数据

from typing import Optional
from fastapi import FastAPI
from pydantic import BaseModel, EmailStr

app = FastAPI()

class UserIn(BaseModel):
    username: str
    password: str
    email: EmilStr
    full_name: Optional[str] = None
    
    
@app.post("/user/", response_model=UserIn)
async def create_user(user: UserIn):
    return user

使用此模型声明输入对象,并使用同一个模型声明输出对象:

from typing import Optional

from fastapi import FastAPI
from pydantic import BaseModel, EmailStr

app = FastAPI()


class UserIn(BaseModel):
    username: str
    password: str
    email: EmailStr
    full_name: Optional[str] = None


# Don't do this in production!
@app.post("/user/", response_model=UserIn)
async def create_user(user: UserIn):
    return user

现在,只要在浏览器中使用密码创建用户,API就会在响应中国返回相同的密码。本例中,因为是用户本人发送密码,这种操作没什么问题,但是如果在其他路径操作中使用同一个模型,就会把用户的密码发送给每一个客户端。

添加输出模型

相对于包含明文密码的输入模型,创建不含明文密码的输出模型:

from typing import Optional

from fastapi import FastAPI
from pydantic import BaseModel, EmailStr

app = FastAPI()


class UserIn(BaseModel):
    username: str
    password: str
    email: EmailStr
    full_name: Optional[str] = None


class UserOut(BaseModel):
    username: str
    email: EmailStr
    full_name: Optional[str] = None


@app.post("/user/", response_model=UserOut)
async def create_user(user: UserIn):
    return user

这样,即便路径操作函数返回同样的输入用户:

from typing import Optional

from fastapi import FastAPI
from pydantic import BaseModel, EmailStr

app = FastAPI()


class UserIn(BaseModel):
    username: str
    password: str
    email: EmailStr
    full_name: Optional[str] = None


class UserOut(BaseModel):
    username: str
    email: EmailStr
    full_name: Optional[str] = None


@app.post("/user/", response_model=UserOut)
async def create_user(user: UserIn):
    return user

但因为response_model中声明的UserOut模型没有包含密码:

from typing import Optional

from fastapi import FastAPI
from pydantic import BaseModel, EmailStr

app = FastAPI()


class UserIn(BaseModel):
    username: str
    password: str
    email: EmailStr
    full_name: Optional[str] = None


class UserOut(BaseModel):
    username: str
    email: EmailStr
    full_name: Optional[str] = None


@app.post("/user/", response_model=UserOut)
async def create_user(user: UserIn):
    return user

FastAPI会过滤掉所有未在输出模型中声明的数据。

响应模型编码参数

响应模型支持默认值:

from typing import List, Optional

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: Optional[str] = None
    price: float
    tax: float = 10.5
    tags: List[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item, response_model_exclude_unset=True)
async def read_item(item_id: str):
    return items[item_id]
  • description: Optional[str] = None 的默认值是 None
  • tax: float = 10.5 的默认值是 10.5
  • tags: List[str] = [] 的默认值是空列表: []

但如果没有为含默认值的属性另赋新值,输出结果会省略含默认值的属性。

例如,NoSQL 数据库的模型中往往包含很多可选属性,如果输出含默认值的属性,输出的 JSON 响应会特别长,此时,可以省略只含默认值的属性。

使用 response_model_exclude_unset 参数

路径操作装饰器的参数设置为 response_model_exclude_unset=True

from typing import List, Optional

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: Optional[str] = None
    price: float
    tax: float = 10.5
    tags: List[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item, response_model_exclude_unset=True)
async def read_item(item_id: str):
    return items[item_id]

响应中就不会再包含未修改过默认值的属性,而是只包含设置过值的属性。

因此,向路径操作发送 ID 为 foo 的商品的请求,则(不包括默认值的)响应为:

{
    "name": "Foo",
    "price": 50.2
}

默认值字段有实际值的数据

但如果为含默认值的模型字段赋予了新值,例如 ID 为 bar 的项:

{
    "name": "Bar",
    "description": "The bartenders",
    "price": 62,
    "tax": 20.2
}

这些值就会包含在返回的响应中。

与默认值相同的数据

如果新的数据与默认值相同,例如 ID 为 baz 的项:

{
    "name": "Baz",
    "description": None,
    "price": 50.2,
    "tax": 10.5,
    "tags": []
}

虽然 FastAPI (其实是 Pydantic)能够识别出 descriptiontax 和 tags 的值与默认值相同,这些值也会显式设置(而不是取自默认值)。

因此,这些值会包含在 JSON 响应里。

response_model_include 和 response_model_exclude

路径操作装饰器参数还有 response_model_include 和 response_model_exclude

这两个参数的值是由属性名 str 组成的 set,用于包含(忽略其它属性)或排除(包含其它属性)集合中的属性名。

如果只有一个 Pydantic 模型,但又想从中移除某些输出数据,则可以使用这种快捷方法。

from typing import Optional

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: Optional[str] = None
    price: float
    tax: float = 10.5


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The Bar fighters", "price": 62, "tax": 20.2},
    "baz": {
        "name": "Baz",
        "description": "There goes my baz",
        "price": 50.2,
        "tax": 10.5,
    },
}


@app.get(
    "/items/{item_id}/name",
    response_model=Item,
    response_model_include={"name", "description"},
)
async def read_item_name(item_id: str):
    return items[item_id]


@app.get("/items/{item_id}/public", response_model=Item, response_model_exclude={"tax"})
async def read_item_public_data(item_id: str):
    return items[item_id]

用 list 代替 set

不使用 set,而是使用 list 或 tuple,FastAPI 可以将其转换为 set,并仍能正常运行:

from typing import Optional

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: Optional[str] = None
    price: float
    tax: float = 10.5


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The Bar fighters", "price": 62, "tax": 20.2},
    "baz": {
        "name": "Baz",
        "description": "There goes my baz",
        "price": 50.2,
        "tax": 10.5,
    },
}


@app.get(
    "/items/{item_id}/name",
    response_model=Item,
    response_model_include=["name", "description"],
)
async def read_item_name(item_id: str):
    return items[item_id]


@app.get("/items/{item_id}/public", response_model=Item, response_model_exclude=["tax"])
async def read_item_public_data(item_id: str):
    return items[item_id]

 

posted on   司徒轩宇  阅读(167)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现
点击右上角即可分享
微信分享提示