[USACO18DEC]Cowpatibility
Description:
Farmer John 的 \(N\) 头奶牛(\(2\le N\le 5\times 10^4\))各自列举了她们最喜欢的五种冰激凌口味的清单。为使这个清单更加精炼,每种可能的口味用一个不超过 \(10^6\) 的正整数 \(\texttt{ID}\) 表示。如果两头奶牛的清单上有至少一种共同的冰激凌口味,那么她们可以和谐共处
请求出不能和谐共处的奶牛的对数。
Solution:
由于只有五种冰激凌,我们可以考虑容斥,对于每头奶牛和它与之前的所有奶牛枚举交集
但记录状态十分蛋疼,用个map就好了,复杂度O(n*2^5),常数巨大,居然没有bitset暴力跑得快
// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e5+5,inf=1e9;
int n;string a[15],s;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;}
map<string, ll > f;
int main()
{
scanf("%d",&n); ll ans=1ll*n*(n-1)/2;
for(int i=1;i<=n;++i) {
for(int j=1;j<=5;++j) cin>>a[j];
sort(a+1,a+6); ll res=0;
for(int j=1;j<32;++j) {
int cnt=0; s="";
for(int k=1;k<=5;++k)
if(j&(1<<(k-1))) ++cnt,s+="?"+a[k];
if(cnt&1) res+=f[s];
else res-=f[s];
++f[s];
}
ans-=res;
}
printf("%lld",ans);
return 0;
}
神奇的暴力:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <bitset>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=2e5+5;
int n,a[mxn][6];
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;}
map<int ,bitset<mxn> > bit;
int main()
{
n=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=5;++j)
bit[a[i][j]=read()].set(i);
int ans=0; bitset<mxn> tp;
for(int i=1;i<=n;++i) {
tp.reset();
for(int j=1;j<=5;++j) tp|=bit[a[i][j]];
ans+=n-tp.count();
}
cout<<ans/2;
return 0;
}