[模板][P3803]多项式乘法
Description:
FFT真的容易忘,所以就放到上面来了
#include<bits/stdc++.h>
using namespace std;
const int mxn=4e6+5;
const double PI=acos(-1);
int n,m,l,lim=1,r[mxn];
struct cp {
double x,y;
cp(double xx=0,double yy=0) {x=xx,y=yy;}
friend cp operator + (cp a,cp b) {
return cp(a.x+b.x,a.y+b.y);
}
friend cp operator - (cp a,cp b) {
return cp(a.x-b.x,a.y-b.y);
}
friend cp operator * (cp a,cp b) {
return cp(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
}a[mxn],b[mxn];
void FFT(cp *p,int opt)
{
for(int i=0;i<lim;++i)
if(i<r[i]) swap(p[i],p[r[i]]);
for(int mid=1;mid<lim;mid<<=1) { //枚举长度
cp wn(cos(PI/mid),opt*sin(PI/mid));
for(int len=mid<<1,j=0;j<lim;j+=len) { //枚举区间
cp w(1,0);
for(int k=0;k<mid;++k,w=w*wn) { //枚举操作的数
cp x=p[j+k],y=w*p[j+mid+k];
p[j+k]=x+y; p[j+mid+k]=x-y; //核心操作
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<=n;++i) scanf("%lf",&a[i].x);
for(int i=0;i<=m;++i) scanf("%lf",&b[i].x);
while(lim<=n+m) lim<<=1,++l; //确定位数
for(int i=0;i<lim;++i)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1)); //非递归的优化
FFT(a,1); FFT(b,1);
for(int i=0;i<=lim;++i) a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<=n+m;++i)
printf("%d ",(int )(a[i].x/lim+0.5)); //IDFT之后要除以长度
return 0;
}