还是畅通工程(最小生成树)

题目:

某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。 

Input

测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。 
当N为0时,输入结束,该用例不被处理。 
Output

对每个测试用例,在1行里输出最小的公路总长度。 
Sample Input

3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0

Sample Output

3
5
Huge input, scanf is recommended.

Hint

Hint

分析:
很明显的最小生成树问题吧!
用Prim算法和Kruscal算法都能解决的!!!

下面是两种算法AC代码:
Prim算法:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int N=105;
const int MAX=100000;
int n;
int dis[N][N];
int lowcost[5000];
void init()
{
    for (int i=0;i<n+10;i++)
        for (int j=0;j<n+10;j++)
    {
        if (i==j)
            dis[i][j]=0;
        else
            dis[i][j]=MAX;
    }
}
void prim()
{
    int k,mini,sum=0;
    for (int i=1;i<=n;i++)
        lowcost[i]=dis[1][i];
        for (int i=2;i<=n;i++)
        {
            mini=MAX;
            k=0;
            for (int j=1;j<=n;j++)
            {
                if (lowcost[j]!=0&&lowcost[j]<mini)
                {
                    mini=lowcost[j];
                    k=j;
                }
            }
            sum+=lowcost[k];
            lowcost[k]=0;
            for (int j=1;j<=n;j++)
            {
                if (lowcost[j]!=0&&lowcost[j]>dis[k][j])
                {
                    lowcost[j]=dis[k][j];
                }
            }
        }
    cout << sum << endl;
}
int main()
{
    int a,b,c;
    while (cin>>n&&n!=0)
    {
        init();
        for (int i=1;i<=n*(n-1)/2;i++)
        {
            cin>>a>>b>>c;
            dis[a][b]=dis[b][a]=c;
        }
        prim();
    }
    return 0;
}

Kruskal算法:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n;
int parent[5000];
struct knot
{
    int start;
    int ending;
    int cost;
}a[5000];
bool cmp(knot m,knot n)
{
    return m.cost<n.cost;
}
int Find(int x)
{
    while (parent[x]>0)
        x=parent[x];
    return x;
}
void kruskal()
{
    int sum=0,k,l;
    for (int i=1;i<=n*(n-1)/2;i++)
        parent[i]=0;
    for (int i=1;i<=n*(n-1)/2;i++)
    {
        k=Find(a[i].start);
        l=Find(a[i].ending);
        if (k!=l)
        {
            parent[k]=l;
            sum+=a[i].cost;
        }
    }
    cout << sum << endl;
}
int main()
{
    while (cin>>n&&n!=0)
    {
        memset(parent,0,sizeof(parent));
        for (int i=1;i<=n*(n-1)/2;i++)
            cin>>a[i].start>>a[i].ending>>a[i].cost;
        sort(a+1,a+1+n*(n-1)/2,cmp);
       kruskal();
    }
    return 0;
}

 

 

 

posted @ 2017-08-07 20:42  你的女孩居居  阅读(158)  评论(0编辑  收藏  举报