Luogu P2221 [HAOI2012]高速公路题解

题面
很套路的拆式子然后线段树上维护区间和的题。一般都是把式子拆成区间内几个形如\(\sum i*a_i, \sum i^2 * a_i\)的式子相加减的形式。

考虑一次询问[l,r]的答案怎么算:

\[ans=\sum_{i=l}^{r}a_i*(i-l+1)*(r-i+1) \]

把括号拆开,就成了:

\[(l+r)\sum_{i=l}^{r}a_i*i-\sum_{i=l}^{r}a_i*i^2-(l-1)*(r+1)\sum_{i=l}^{r}a_i \]

线段树上维护区间\(\sum i^2*a_i\)的和即可。

代码:

#include<bits/stdc++.h>
using namespace std;
#define N 200007
#define ll long long
struct data
{
    ll s1,s2,s3;
};
data operator +(data l,data r)
{
    return (data){l.s1+r.s1,l.s2+r.s2,l.s3+r.s3};
}
data operator *(data v,ll d)
{
    return (data){v.s1*d,v.s2*d,v.s3*d};
}

int n;

struct Tree
{
#define lc (k<<1)
#define rc (k<<1|1)
    data val[N<<2],sum[N<<2];
    ll add[N<<2];

    void mark(int k,ll d)
	{
	    val[k]=val[k]+sum[k]*d;
	    add[k]+=d;
	}
    void pushdown(int k)
	{
	    mark(lc,add[k]);
	    mark(rc,add[k]);
	    add[k]=0;
	}
    void build(int k,int l,int r)
	{
	    if(l==r)
	    {
		sum[k]={1,l,1ll*l*l};
		return;
	    }
	    int mid=l+r>>1;
	    build(lc,l,mid),build(rc,mid+1,r);
	    sum[k]=sum[lc]+sum[rc];
	}
    void modify(int k,int l,int r,int x,int y,ll d)
	{
	    if(l>=x&&r<=y)return mark(k,d);
	    int mid=l+r>>1;
	    pushdown(k);
	    if(x<=mid)modify(lc,l,mid,x,y,d);
	    if(y>mid)modify(rc,mid+1,r,x,y,d);
	    val[k]=val[lc]+val[rc];
	}
    data query(int k,int l,int r,int x,int y)
	{
	    if(l>=x&&r<=y)return val[k];
	    int mid=l+r>>1;
	    data ans={0,0,0};
	    pushdown(k);
	    if(x<=mid)ans=ans+query(lc,l,mid,x,y);
	    if(y>mid)ans=ans+query(rc,mid+1,r,x,y);
	    return ans;
	}
    void mdy(int l,int r,ll d)
	{
	    modify(1,1,n,l,r,d);
	}
    ll ask(ll l,ll r)
	{
	    data ans=query(1,1,n,l,r);
	    return (l+r)*ans.s2-ans.s3-(l-1)*(r+1)*ans.s1;
	}
}T;

ll gcd(ll x,ll y)
{
    return y?gcd(y,x%y):x;
}

int main()
{
    int m;
    scanf("%d%d",&n,&m),n--;
    int l,r;
    ll d;
    char s[10];
    T.build(1,1,n);
    for(int i=1;i<=m;i++)
    {
	scanf("%s%d%d",s,&l,&r);r--;
	if(s[0]=='C')
	{
	    scanf("%lld",&d);
	    T.mdy(l,r,d);
	}
	else
	{
	    ll x=T.ask(l,r),len=r-l+1,y=1ll*len*(len+1)/2;
	    ll gd=gcd(x,y);
	    printf("%lld/%lld\n",x/gd,y/gd);
	}
    }
    return 0;
}
posted @ 2019-12-17 22:13  lyyi2003  阅读(183)  评论(0编辑  收藏  举报