mysql读写分离

好久没有写过博客了,趁着年假还有一天,把去年项目所运用的读写分离在这里概述一下及其注意点,以防以后项目再有使用到;

准备工作

1 开发环境:window,idea,maven,spring boot,mybatis,druid(淘宝数据库连接池)

2 数据库服务器:linux,mysql master(192.168.203.135),mysql salve(192.168.203.139)

3 读写分离之前必须先做好数据库的主从复制,关于主从复制不是该篇幅的主要叙述重点,关于主从复制读者可以自行google或者百度,教程基本都是一样,可行

 

注意以下几点:
a:做主从复制时,首先确定两台服务器的mysql没任何自定义库(否则只可以配置完后之前的东西没法同步,或者两个库都有完全相同的库应该也是可以同步)
b:server_id必须配置不一样
c:防火墙不能把mysql服务端口给拦截了(默认3306)
d:确保两台mysql可以相互访问
e:重置master,slave。Reset master;reset slave;开启关闭slave,start slave;stop slave;
f:主DB server和从DB server数据库的版本一致

4 读写分离方式:

  4-1 基于程序代码内部实现: 在代码中根据select 、insert进行路由分类,这类方法也是目前生产环境下应用最广泛的。优点是性能较好,因为程序在代码中实现,不需要增加额外的硬件开支,缺点是需要开发人员来实现,运维人员无从下手。

  4-2 基于中间代理层实现: 代理一般介于应用服务器和数据库服务器之间,代理数据库服务器接收到应用服务器的请求后根据判断后转发到,后端数据库,有以下代表性的程序。

 本文基于两种方式的叙述:

基于应用层代码实现方式(内容都是通过代码体现,必要的说明存在代码中)

1 配置pom.xml,导入需要的jar包

  

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.lishun</groupId>
    <artifactId>mysql_master_salve</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>mysql_master_salve</name>
    <description>Demo project for Spring Boot</description>

    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>1.5.10.RELEASE</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
            <version>1.3.1</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
            <version>RELEASE</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid</artifactId>
            <version>1.0.18</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-aop</artifactId>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
            <plugin>
                <groupId>org.mybatis.generator</groupId>
                <artifactId>mybatis-generator-maven-plugin</artifactId>
                <version>1.3.2</version>
                <dependencies>
                    <dependency>
                        <groupId>mysql</groupId>
                        <artifactId>mysql-connector-java</artifactId>
                        <version>5.1.43</version>
                    </dependency>
                </dependencies>
                <configuration>
                    <overwrite>true</overwrite>
                </configuration>
            </plugin>
        </plugins>
    </build>


</project>

 

2 配置application.properties

server.port=9022
#mybatis配置*mapper.xml文件和实体别名
mybatis.mapper-locations=classpath:mapper/*.xml
mybatis.type-aliases-package=com.lishun.entity

spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.password=123456
spring.datasource.username=root

#写节点
spring.datasource.master.url=jdbc:mysql://192.168.203.135:3306/worldmap
#两个个读节点(为了方便测试这里用的是同一个服务器数据库,生产环境应该不使用)
spring.datasource.salve1.url=jdbc:mysql://192.168.203.139:3306/worldmap
spring.datasource.salve2.url=jdbc:mysql://192.168.203.139:3306/worldmap

# druid 连接池 Setting
# 初始化大小,最小,最大
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
spring.datasource.initialSize=5
spring.datasource.minIdle=5
spring.datasource.maxActive=20
# 配置获取连接等待超时的时间
spring.datasource.maxWait=60000
# 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒
spring.datasource.timeBetweenEvictionRunsMillis=60000
# 配置一个连接在池中最小生存的时间,单位是毫秒
spring.datasource.minEvictableIdleTimeMillis=300000
spring.datasource.validationQuery=SELECT 1 FROM rscipc_sys_user
spring.datasource.testWhileIdle=true
spring.datasource.testOnBorrow=false
spring.datasource.testOnReturn=false
# 打开PSCache,并且指定每个连接上PSCache的大小
spring.datasource.poolPreparedStatements=true
spring.datasource.maxPoolPreparedStatementPerConnectionSize=20
# 配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙
spring.datasource.filters=stat,wall,log4j
# 通过connectProperties属性来打开mergeSql功能;慢SQL记录
spring.datasource.connectionProperties=druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
spring.datasource.logSlowSql=true
#End

3 启动类(注意:其他需要spring管理的bean(service,config等)必须放在该启动类的子包下,不然会扫描不到bean,导致注入失败)

@SpringBootApplication
@MapperScan("com.lishun.mapper") //!!!!!! 注意:扫描所有mapper
public class MysqlMasterSalveApplication {
	public static void main(String[] args) {
		SpringApplication.run(MysqlMasterSalveApplication.class, args);
	}
}

4 动态数据源  DynamicDataSource

  

/**
 * @author lishun
 * @Description:动态数据源, 继承AbstractRoutingDataSource
 * @date 2017/8/9
 */
public class DynamicDataSource extends AbstractRoutingDataSource {
	public static final Logger log = LoggerFactory.getLogger(DynamicDataSource.class);

	/**
	 * 默认数据源
	 */
	public static final String DEFAULT_DS = "read_ds";
	private static final ThreadLocal<String> contextHolder = new ThreadLocal<>();
	public static void setDB(String dbType) {// 设置数据源名
		log.info("切换到{}数据源", dbType);
		contextHolder.set(dbType);
	}

	public static void clearDB() {
		contextHolder.remove();
	}// 清除数据源名
	@Override
	protected Object determineCurrentLookupKey() {
		return contextHolder.get();
	}
}

5 线程池配置数据源  

@Configuration
public class DruidConfig {
	private Logger logger = LoggerFactory.getLogger(DruidConfig.class);

	@Value("${spring.datasource.master.url}")
	private String masterUrl;

	@Value("${spring.datasource.salve1.url}")
	private String salve1Url;

	@Value("${spring.datasource.salve2.url}")
	private String salve2Url;

	@Value("${spring.datasource.username}")
	private String username;

	@Value("${spring.datasource.password}")
	private String password;

	@Value("${spring.datasource.driver-class-name}")
	private String driverClassName;

	@Value("${spring.datasource.initialSize}")
	private int initialSize;

	@Value("${spring.datasource.minIdle}")
	private int minIdle;

	@Value("${spring.datasource.maxActive}")
	private int maxActive;

	@Value("${spring.datasource.maxWait}")
	private int maxWait;

	@Value("${spring.datasource.timeBetweenEvictionRunsMillis}")
	private int timeBetweenEvictionRunsMillis;

	@Value("${spring.datasource.minEvictableIdleTimeMillis}")
	private int minEvictableIdleTimeMillis;

	@Value("${spring.datasource.validationQuery}")
	private String validationQuery;

	@Value("${spring.datasource.testWhileIdle}")
	private boolean testWhileIdle;

	@Value("${spring.datasource.testOnBorrow}")
	private boolean testOnBorrow;

	@Value("${spring.datasource.testOnReturn}")
	private boolean testOnReturn;

	@Value("${spring.datasource.filters}")
	private String filters;

	@Value("${spring.datasource.logSlowSql}")
	private String logSlowSql;

	@Bean
	public ServletRegistrationBean druidServlet() {

		logger.info("init Druid Servlet Configuration ");
		ServletRegistrationBean reg = new ServletRegistrationBean();
		reg.setServlet(new StatViewServlet());
		reg.addUrlMappings("/druid/*");
		reg.addInitParameter("loginUsername", username);
		reg.addInitParameter("loginPassword", password);
		reg.addInitParameter("logSlowSql", logSlowSql);
		return reg;
	}

	@Bean
	public FilterRegistrationBean filterRegistrationBean() {
		FilterRegistrationBean filterRegistrationBean = new FilterRegistrationBean();
		filterRegistrationBean.setFilter(new WebStatFilter());
		filterRegistrationBean.addUrlPatterns("/*");
		filterRegistrationBean.addInitParameter("exclusions", "*.js,*.gif,*.jpg,*.png,*.css,*.ico,/druid/*");
		filterRegistrationBean.addInitParameter("profileEnable", "true");
		return filterRegistrationBean;
	}

	@Bean
	public DataSource druidDataSource() {
		DruidDataSource datasource = new DruidDataSource();
		datasource.setUrl(masterUrl);
		datasource.setUsername(username);
		datasource.setPassword(password);
		datasource.setDriverClassName(driverClassName);
		datasource.setInitialSize(initialSize);
		datasource.setMinIdle(minIdle);
		datasource.setMaxActive(maxActive);
		datasource.setMaxWait(maxWait);
		datasource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
		datasource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
		datasource.setValidationQuery(validationQuery);
		datasource.setTestWhileIdle(testWhileIdle);
		datasource.setTestOnBorrow(testOnBorrow);
		datasource.setTestOnReturn(testOnReturn);
		try {
			datasource.setFilters(filters);
		} catch (SQLException e) {
			logger.error("druid configuration initialization filter", e);
		}

		Map<Object, Object> dsMap = new HashMap();
		dsMap.put("read_ds_1", druidDataSource_read1());
		dsMap.put("read_ds_2", druidDataSource_read2());

		dsMap.put("write_ds", datasource);

		DynamicDataSource dynamicDataSource = new DynamicDataSource();
		dynamicDataSource.setTargetDataSources(dsMap);
		return dynamicDataSource;
	}

	public DataSource druidDataSource_read1() {
		DruidDataSource datasource = new DruidDataSource();
		datasource.setUrl(salve1Url);
		datasource.setUsername(username);
		datasource.setPassword(password);
		datasource.setDriverClassName(driverClassName);
		datasource.setInitialSize(initialSize);
		datasource.setMinIdle(minIdle);
		datasource.setMaxActive(maxActive);
		datasource.setMaxWait(maxWait);
		datasource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
		datasource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
		datasource.setValidationQuery(validationQuery);
		datasource.setTestWhileIdle(testWhileIdle);
		datasource.setTestOnBorrow(testOnBorrow);
		datasource.setTestOnReturn(testOnReturn);
		try {
			datasource.setFilters(filters);
		} catch (SQLException e) {
			logger.error("druid configuration initialization filter", e);
		}
		return datasource;
	}
	public DataSource druidDataSource_read2() {
		DruidDataSource datasource = new DruidDataSource();
		datasource.setUrl(salve2Url);
		datasource.setUsername(username);
		datasource.setPassword(password);
		datasource.setDriverClassName(driverClassName);
		datasource.setInitialSize(initialSize);
		datasource.setMinIdle(minIdle);
		datasource.setMaxActive(maxActive);
		datasource.setMaxWait(maxWait);
		datasource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
		datasource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
		datasource.setValidationQuery(validationQuery);
		datasource.setTestWhileIdle(testWhileIdle);
		datasource.setTestOnBorrow(testOnBorrow);
		datasource.setTestOnReturn(testOnReturn);
		try {
			datasource.setFilters(filters);
		} catch (SQLException e) {
			logger.error("druid configuration initialization filter", e);
		}
		return datasource;
	}

}

6 数据源注解:在service层通过数据源注解来指定数据源

   

/**
 * @author lishun
 * @Description: 读数据源注解
 * @date 2017/8/9
 */
@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface ReadDataSource {
	String vlaue() default "read_ds";
}

/**
 * @author lishun
 * @Description: 写数据源注解
 * @date 2017/8/9
 */
@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface WriteDataSource {
	String value() default "write_ds";
}

7 service aop切面来切换数据源

  

/**
 * @author lishun
 * @Description: TODO
 * @date 2017/8/9
 */
@Component
@Aspect
public class ServiceAspect implements PriorityOrdered {
	@Pointcut("execution(public * com.lishun.service.*.*(..))")
	public void dataSource(){};

	@Before("dataSource()")
	public void before(JoinPoint joinPoint){
		Class<?> className = joinPoint.getTarget().getClass();//获得当前访问的class
		String methodName = joinPoint.getSignature().getName();//获得访问的方法名
		Class[] argClass = ((MethodSignature)joinPoint.getSignature()).getParameterTypes();//得到方法的参数的类型
		String dataSource = DynamicDataSource.DEFAULT_DS;
		try {
			Method method = className.getMethod(methodName, argClass);// 得到访问的方法对象
			if (method.isAnnotationPresent(ReadDataSource.class)) {
				ReadDataSource annotation = method.getAnnotation(ReadDataSource.class);
				dataSource = annotation.vlaue();
				int i = new Random().nextInt(2) + 1;    /* 简单的负载均衡 */

				dataSource = dataSource + "_" + i;
			}else if (method.isAnnotationPresent(WriteDataSource.class)){
				WriteDataSource annotation = method.getAnnotation(WriteDataSource.class);
				dataSource = annotation.value();
			}
		} catch (Exception e) {
			e.printStackTrace();
		}
		DynamicDataSource.setDB(dataSource);// 切换数据源
	}

	/* 基于方法名
	@Before("execution(public * com.lishun.service.*.find*(..)) || execution(public * com.lishun.service.*.query*(..))")
	public void read(JoinPoint joinPoint){
		DynamicDataSource.setDB("read_ds");// 切换数据源
	}
	@Before("execution(public * com.lishun.service.*.insert*(..)) || execution(public * com.lishun.service.*.add*(..))")
	public void write(JoinPoint joinPoint){
		DynamicDataSource.setDB("write_ds");// 切换数据源
	}
	*/

	@After("dataSource()")
	public void after(JoinPoint joinPoint){
		DynamicDataSource.clearDB();// 切换数据源
	}

	@AfterThrowing("dataSource()")
	public void AfterThrowing(){
		System.out.println("AfterThrowing---------------" );
	}

	@Override
	public int getOrder() {
		return 1;//数值越小该切面先被执行,先选择数据源(防止事务aop使用数据源出现空异常)
	}
}

8 测试 mapper的代码就不贴了,主要是service和controller

  service

@Service
@Transactional
public class WmIpInfoServiceImpl implements WmIpInfoService {
	@Autowired
	public WmIpInfoMapper wmIpInfoMapper;

	@Override
	@ReadDataSource
	public WmIpInfo findOneById(String id) {
		//wmIpInfoMapper.selectByPrimaryKey(id);
		return wmIpInfoMapper.selectByPrimaryKey(id);
	}

	@Override
	@WriteDataSource
	public int insert(WmIpInfo wmIpInfo) {
		int result = wmIpInfoMapper.insert(wmIpInfo);
		return result;
	}
}

  contrlloer

@RestController
public class IndexController {
	@Autowired
	public WmIpInfoService wmIpInfoService;
	@GetMapping("/index/{id}")
	public WmIpInfo index(@PathVariable(value = "id") String id){
		WmIpInfo wmIpInfo = new WmIpInfo();
		wmIpInfo.setId(UUID.randomUUID().toString());
		wmIpInfoService.insert(wmIpInfo);
		wmIpInfoService.findOneById(id);
		return null;
	}
}

  运行spring boot 在浏览器输入http://localhost:9022/index/123456

  查看日志

  

 

 基于中间件方式实现读写分离(mycat:主要是mycat安装使用及其注意事项)

3-1 下载 http://dl.mycat.io/
3-2 解压,配置MYCAT_HOME;
3-3 修改文件 vim conf/schema.xml

<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">

<mycat:schema xmlns:mycat="http://io.mycat/">
  <schema name="worldmap" checkSQLschema="false" sqlMaxLimit="100" dataNode="worldmap_node"></schema>
  <dataNode name="worldmap_node" dataHost="worldmap_host" database="worldmap" /> <!-- database:数据库名称 -->
  <dataHost name="worldmap_host" maxCon="1000" minCon="10" balance="1" writeType="0" dbType="mysql" dbDriver="native" switchType="2" slaveThreshold="100">
    <heartbeat>select user()</heartbeat>
    <writeHost host="hostM1" url="192.168.203.135:3306" user="root" password="123456"><!--读写分离模式,写库:192.168.203.135,读库192.168.203.139-->
      <readHost host="hostR1" url="192.168.203.139:3306" user="root" password="123456" />
    </writeHost>
    <writeHost host="hostM2" url="192.168.203.135:3306" user="root" password="123456"> <!--主从切换模式,当hostM1宕机,读写操作在hostM2服务器数据库执行-->
  </dataHost>
</mycat:schema>

  配置说明:
  name:属性唯一标识dataHost标签,供上层的标签使用。
  maxCon:最大连接数
  minCon:最先连接数
  balance
    1、balance=0 不开启读写分离机制,所有读操作都发送到当前可用的writehost了 .
    2、balance=1 全部的readhost与stand by writeHost 参与select语句的负载均衡。简单的说,双主双从模式(M1àS1,M2àS2,并且M1和M2互为主备),正常情况下,M1,S1,S2都参与select语句的复杂均衡。
    3、balance=2 所有读操作都随机的在readhost和writehost上分发

  writeType 负载均衡类型,目前的取值有3种:
    1、writeType="0″, 所有写操作发送到配置的第一个writeHost。
    2、writeType="1″,所有写操作都随机的发送到配置的writeHost。
    3、writeType="2″,不执行写操作。

  switchType
    1、switchType=-1 表示不自动切换
    2、switchType=1 默认值,自动切换
    3、switchType=2 基于MySQL 主从同步的状态决定是否切换

  dbType:数据库类型 mysql,postgresql,mongodb、oracle、spark等。

  heartbeat:用于和后端数据库进行心跳检查的语句。例如,MYSQL可以使用select user(),Oracle可以使用select 1 from dual等。
      这个标签还有一个connectionInitSql属性,主要是当使用Oracla数据库时,需要执行的初始化SQL语句就这个放到这里面来。例如:altersession set nls_date_format='yyyy-mm-dd hh24:mi:ss'
      当switchType=2 主从切换的语句必须是:show slave status

  writeHost、readHost:这两个标签都指定后端数据库的相关配置给mycat,用于实例化后端连接池。唯一不同的是,writeHost指定写实例、readHost指定读实例,
            在一个dataHost内可以定义多个writeHost和readHost。但是,如果writeHost指定的后端数据库宕机,那么这个writeHost绑定的所有readHost都将不可用。
            另一方面,由于这个writeHost宕机系统会自动的检测到,并切换到备用的writeHost上去。

3-4 修改文件 vim conf/server.xml

  

<!DOCTYPE mycat:server SYSTEM "server.dtd">
<mycat:server xmlns:mycat="http://io.mycat/">
<system>

</system>

<user name="root">
  <property name="password">123456</property>
  <property name="schemas">worldmap</property><!--与schema.xml相对应-->
  <property name="readOnly">false</property> <!--readOnly是应用连接中间件逻辑库所具有的权限。true为只读,false为读写都有,默认为false。-->
</user>

</mycat:server>

 

3-5 启动 mycat start
查看启动日志:logs/wrapper.log;,正常启动成功后会有mycat.log日志,如果服务未启动成功不会有对应日志

3-6:对于开发人员mycat相当于一个新的数据库服务端(默认端口8066),开发人员增删改查不再是直接连接数据库,而是连接数据库中间件,中间件通过其自带的lua脚本进行sql判断,来路由到指定数据库(实质根据selet,insert,update,delete关键字)

3-7:测试读写分离

  读数据路由到 192.168.203.139

  写数据路由到192.168.203.135 

 

  当主库宕机,读写操作都在192.168.203.139

  

  

3-8:注意事项
一般使用框架都会用到事务,如果都要到事务那么就都会访问主服务器,达不到分离的效果,因此配置事务的时候要注意区分,比如只对包含增删改的进行事务配置

 

posted @ 2018-02-27 17:08  _春夏秋冬  阅读(2067)  评论(0编辑  收藏  举报