BZOJ 2467 生成树(组合数学)
题意:求n-五边形的生成树个数。
结论题,答案为4*n*5^(n-1).
首先中心的n边形一定需要切掉一个边,C(1,n).
然后每个五边形都切一个边,C(1,4)*5^(n-1).
于是答案就是4*n*5^(n-1).
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <bitset> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e-8 # define MOD 2007 # define INF 1000000000 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } const int N=105; //Code begin... int mod[N]; int main () { int T, n; scanf("%d",&T); mod[0]=1; FOR(i,1,100) mod[i]=mod[i-1]*5%MOD; while (T--) { scanf("%d",&n); printf("%d\n",4*n*mod[n-1]%MOD); } return 0; }