BZOJ 2131 圈地计划(最小割+黑白染色)
类似于happiness的一道题,容易想到最小割的做法。
但是不同的是那一道题是相邻的如果相同则有收益,这题是相邻的不同才有收益。
转化到建图上面时,会发现,两个相邻的点连的边容量会是负数。。
有一种转化的办法,把图进行黑白染色后,把白点的S-T倒转过来,这样就转化成了happiness那道题了。。。
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <bitset> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e-8 # define MOD 30031 # define INF 1000000000 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } const int N=10005; //Code begin... struct Edge{int p, next, w;}edge[N*20]; int head[N], cnt=2, A[105][105], B[105][105], C[105][105]; int s, t, vis[N], n, m, ps[4][2]={0,1,1,0,0,-1,-1,0}; queue<int>Q; void add_edge(int u, int v, int w){ edge[cnt].p=v; edge[cnt].w=w; edge[cnt].next=head[u]; head[u]=cnt++; edge[cnt].p=u; edge[cnt].w=0; edge[cnt].next=head[v]; head[v]=cnt++; } int get_xy(int x, int y){return (x-1)*m+y;} int bfs(){ int v; mem(vis,-1); vis[s]=0; Q.push(s); while (!Q.empty()) { v=Q.front(); Q.pop(); for (int i=head[v]; i; i=edge[i].next) { if (edge[i].w>0&&vis[edge[i].p]==-1) { vis[edge[i].p]=vis[v]+1; Q.push(edge[i].p); } } } return vis[t]!=-1; } int dfs(int x, int low){ int a, temp=low; if (x==t) return low; for (int i=head[x]; i; i=edge[i].next) { if (edge[i].w>0&&vis[edge[i].p]==vis[x]+1) { a=dfs(edge[i].p,min(edge[i].w,temp)); temp-=a; edge[i].w-=a; edge[i^1].w+=a; if (temp==0) break; } } if (temp==low) vis[x]=-1; return low-temp; } int dinic(){ int sum=0; while (bfs()) sum+=dfs(s,INF)); return sum; } int main () { int sum=0; scanf("%d%d",&n,&m); s=0; t=n*m+1; FOR(i,1,n) FOR(j,1,m) scanf("%d",&A[i][j]), sum+=A[i][j]; FOR(i,1,n) FOR(j,1,m) scanf("%d",&B[i][j]), sum+=B[i][j]; FOR(i,1,n) FOR(j,1,m) scanf("%d",&C[i][j]); FOR(i,1,n) FOR(j,1,m) { if ((i-j)%2==0) add_edge(s,get_xy(i,j),A[i][j]), add_edge(get_xy(i,j),t,B[i][j]); else add_edge(s,get_xy(i,j),B[i][j]), add_edge(get_xy(i,j),t,A[i][j]); FO(k,0,4) { int dx=i+ps[k][0], dy=j+ps[k][1]; if (dx<=0||dy<=0||dx>n||dy>m) continue; add_edge(get_xy(i,j),get_xy(dx,dy),C[i][j]+C[dx][dy]); sum+=C[i][j]; } } printf("%d\n",sum-dinic()); return 0; }