luogu 1344 追查坏牛奶(最小割)
第一问求最小割。 第二问求割边最小的最小割。
我们直接求出第二问就可以求出第一问了。
对于求割边最小,如果我们可以把每条边都附加一个1的权值,那么求最小割是不是会优先选择1最少的边呢。
但是如果直接把边的权值+1,这样求得的最小割就不是原来的最小割了,那是因为1会对原来的容量产生影响。
如果把每条边的权值都乘以一个很大的常数,再加上附加权值1,这样求出的最小割是不是显然也是原图的最小割呢。
那么最终的答案除以这个常数就是最小割的容量,最终的答案模这个常数就是最小割的最小割边数。
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e-7 # define MOD 1024523 # define INF 1e16 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } void Out(int a) { if(a<0) {putchar('-'); a=-a;} if(a>=10) Out(a/10); putchar(a%10+'0'); } const int N=35; //Code begin... struct Edge{int p, next; LL w;}edge[4005]; int head[N], cnt=2, s, t, vis[N]; queue<int>Q; void add_edge(int u, int v, LL w){ edge[cnt].p=v; edge[cnt].w=w; edge[cnt].next=head[u]; head[u]=cnt++; edge[cnt].p=u; edge[cnt].w=0; edge[cnt].next=head[v]; head[v]=cnt++; } int bfs(){ int i, v; mem(vis,-1); vis[s]=0; Q.push(s); while (!Q.empty()) { v=Q.front(); Q.pop(); for (i=head[v]; i; i=edge[i].next) { if (edge[i].w>0 && vis[edge[i].p]==-1) { vis[edge[i].p]=vis[v] + 1; Q.push(edge[i].p); } } } return vis[t]!=-1; } LL dfs(int x, LL low){ int i; LL a, temp=low; if (x==t) return low; for (i=head[x]; i; i=edge[i].next) { if (edge[i].w>0 && vis[edge[i].p]==vis[x]+1){ a=dfs(edge[i].p,min(edge[i].w,temp)); temp-=a; edge[i].w-=a; edge[i^1].w += a; if (temp==0) break; } } if (temp==low) vis[x]=-1; return low-temp; } int main () { int n, m, u, v, w; LL P=10000000; scanf("%d%d",&n,&m); s=1; t=n; FOR(i,1,m) scanf("%d%d%d",&u,&v,&w), add_edge(u,v,(LL)w*P+1); LL sum=0; while (bfs()) sum+=dfs(s,INF); printf("%lld %lld\n",sum/P,sum%P); return 0; }