BZOJ 1566 管道取珠(DP)
求方案数的平方之和。这个看起来很难解决。如果转化为求方案数的有序对的个数。那么就相当于求A和B同时取,最后序列一样的种数。
令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取了k个,下管道取了i+j-k个珠子的序列相同的种数。
那么状态转移方程显然可得。
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e-9 # define MOD 1024523 # define INF 1000000000 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r //# define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } void Out(int a) { if(a<0) {putchar('-'); a=-a;} if(a>=10) Out(a/10); putchar(a%10+'0'); } const int N=505; //Code begin... int dp[N][N][N]; char s1[N], s2[N]; int dfs(int x, int y, int z){ if (~dp[x][y][z]) return dp[x][y][z]; int res=0; if (x>0&&z>0&&s1[x]==s1[z]) res+=dfs(x-1,y,z-1); if (x>0&&x+y>z&&s1[x]==s2[x+y-z]) res+=dfs(x-1,y,z); if (y>0&&z>0&&s2[y]==s1[z]) res+=dfs(x,y-1,z-1); if (y>0&&x+y>z&&s2[y]==s2[x+y-z]) res+=dfs(x,y-1,z); return dp[x][y][z]=res%MOD; } int main () { int n, m; scanf("%d%d%s%s",&n,&m,s1+1,s2+1); mem(dp,-1); dp[0][0][0]=1; printf("%d\n",dfs(n,m,n)); return 0; }