BZOJ 1562 变换序列(二分图匹配)
显然每个位置只有两个情况,所以用二分图最大匹配来求解。
如果二分图有完全匹配,则有解。
关键是如何求最小的字典序解。
实际上用匈牙利算法从后面开始找增广路,并优先匹配字典序小的即可。
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e-9 # define MOD 1000000000 # define INF 1000000000 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r //# define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } void Out(int a) { if(a<0) {putchar('-'); a=-a;} if(a>=10) Out(a/10); putchar(a%10+'0'); } const int N=10005; //Code begin... struct Edge{int p, next;}edge[N<<1]; int head[N], cnt=1, res[N]; int linker[N], uN; bool used[N]; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;} bool dfs(int u){ for (int i=head[u]; i; i=edge[i].next) { int v=edge[i].p; if (!used[v]) { used[v]=true; if (linker[v]==-1||dfs(linker[v])) {linker[v]=u; return true;} } } return false; } int hungary(){ int res=0; mem(linker,-1); FO(u,0,uN) { mem(used,0); if (dfs(u)) ++res; } return res; } int main () { int n, x; scanf("%d",&n); uN=n; FO(i,0,n) { scanf("%d",&x); int u=(i+x)%n, v=(i-x+n)%n; if (u<v) swap(u,v); if (u!=v) add_edge(i,v); add_edge(i,u); } int ans=hungary(); if (ans!=n) puts("No Answer"); else { FO(i,0,n) res[linker[i]]=i; FO(i,0,n) printf(i==0?"%d":" %d",res[i]); putchar('\n'); } return 0; }