BZOJ 1406 密码箱(数论)
很简洁的题目。求出x^2%n=1的所有x<=n的值。 n<=2e9.
直接枚举x一定是超时的。 看看能不能化成有性质的式子。
有 (x+1)(x-1)%n==0,设n=a*b,那么一定有x+1=k1a,x-1=k2b. 不妨设a<=b.那么就能O(sqrt(n))枚举a。
然后再枚举x,验证x是否满足这两个式子。注意不能令x=k1a-1.由于a比较小,枚举x=k2b+1,k2b-1即可。
另外set很好用啊。
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi 3.1415926535 # define eps 1e-9 # define MOD 100000007 # define INF 1000000000 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int res=0, flag=0; char ch; if((ch=getchar())=='-') flag=1; else if(ch>='0'&&ch<='9') res=ch-'0'; while((ch=getchar())>='0'&&ch<='9') res=res*10+(ch-'0'); return flag?-res:res; } void Out(int a) { if(a<0) {putchar('-'); a=-a;} if(a>=10) Out(a/10); putchar(a%10+'0'); } const int N=100005; //Code begin... set<LL>::iterator it; set<LL>S; int main () { LL a, b, x, n; scanf("%lld",&n); for (int i=1; i*i<=n; ++i) { if (n%i) continue; a=i; b=n/i; for (int k=0; (x=b*k+1)<n; ++k) if ((x+1)%a==0) S.insert(x); for (int k=1; (x=b*k-1)<n; ++k) if ((x-1)%a==0) S.insert(x); } for (it=S.begin(); it!=S.end(); ++it) printf("%lld\n",*it); return 0; }