BZOJ 1211 树的计数(purfer序列)
首先考虑无解的情况, 根据purfer序列,当dee[i]=0并且n!=1的时候,必然无解。否则为1.
且sum(dee[i]-1)!=n-2也必然无解。
剩下的使用排列组合即可推出公式。需要注意的是题目虽然说最终答案不会超过1e17,但是中间过程可能超。
由于n<=150, 所以sum最多是148. 于是我们可以打出150*150的组合表。实现O(1)计算组合数。
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi 3.1415926535 # define eps 1e-9 # define MOD 100000007 # define INF 1000000000 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int res=0, flag=0; char ch; if((ch=getchar())=='-') flag=1; else if(ch>='0'&&ch<='9') res=ch-'0'; while((ch=getchar())>='0'&&ch<='9') res=res*10+(ch-'0'); return flag?-res:res; } void Out(int a) { if(a<0) {putchar('-'); a=-a;} if(a>=10) Out(a/10); putchar(a%10+'0'); } const int N=10005; //Code begin... int dee[155]; LL cc[155][155]; void init() { FOR(i,0,150) { cc[i][0]=1; FOR(j,1,i) cc[i][j]=cc[i-1][j-1]+cc[i-1][j]; } } int main () { init(); int n, sum=0; LL ans=1; scanf("%d",&n); if (n==1) { scanf("%d",dee); puts(dee[0]==0?"1":"0"); return 0; } FOR(i,1,n) { scanf("%d",dee+i), --dee[i], sum+=dee[i]; if (dee[i]<0) {puts("0"); return 0;} } if (sum!=n-2) {puts("0"); return 0;} FOR(i,1,n) { if (!dee[i]) continue; ans*=cc[sum][dee[i]]; sum-=dee[i]; } printf("%lld\n",ans); return 0; }