IOI 98 (POJ 1179)Polygon(区间DP)
很容易想到枚举第一步切掉的边,然后再计算能够产生的最大值。
联想到区间DP,令dp[i][l][r]为第一步切掉第i条边后从第i个顶点起区间[l,r]能够生成的最大值是多少。
但是状态不好转移,因为操作的符号不仅有‘+’,还有‘*’,加法的话,父区间的最大值显然可以从子区间的最大值相加得出。
乘法的话,父区间的最大值除了由子区间的最大值相乘得出,还可以由子区间的最小值相乘得出。
所以,多定义一维状态。 dp[i][l][r][flag]表示第一步切掉第i条边后从第i个顶点起区间[l,r]能够生成的最大值/最小值是多少?
转移的话很简单
dp[i][l][r][0]=min(dp[i][l][k][0]+dp[i][k+1][r][0])(操作符为+),min(dp[i][l][k][0]*dp[i][k+1][r][1], dp[i][l][k][1]*dp[i][k+1][r][0])(操作符为*).
dp[i][l][r][1]=max(dp[i][l][k][1]+dp[i][k+1][r][1])(操作符为+),min(dp[i][l][k][0]*dp[i][k+1][r][0], dp[i][l][k][1]*dp[i][k+1][r][1])(操作符为*).
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e-8 # define MOD 1000000007 # define INF 1000000000 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int res=0, flag=0; char ch; if((ch=getchar())=='-') flag=1; else if(ch>='0'&&ch<='9') res=ch-'0'; while((ch=getchar())>='0'&&ch<='9') res=res*10+(ch-'0'); return flag?-res:res; } void Out(int a) { if(a<0) {putchar('-'); a=-a;} if(a>=10) Out(a/10); putchar(a%10+'0'); } const int N=55; //Code begin... int ans[N], num[N], dp[N][N][N][2], n; char s[N][2]; bool vis[N][N][N][2]; int dfs(int x, int l, int r, int flag) { if (vis[x][l][r][flag]) return dp[x][l][r][flag]; vis[x][l][r][flag]=1; if (l==r) return dp[x][l][r][flag]=num[(x+l-2)%n+1]; if (flag) { int ans=-INF; FO(i,l,r) { if (s[(x+i-1)%n+1][0]=='t') ans=max(ans,dfs(x,l,i,1)+dfs(x,i+1,r,1)); else ans=max(ans,max(dfs(x,l,i,1)*dfs(x,i+1,r,1),dfs(x,l,i,0)*dfs(x,i+1,r,0))); } return dp[x][l][r][flag]=ans; } else { int ans=INF; FO(i,l,r) { if (s[(x+i-1)%n+1][0]=='t') ans=min(ans,dfs(x,l,i,0)+dfs(x,i+1,r,0)); else ans=min(ans,min(dfs(x,l,i,0)*dfs(x,i+1,r,1),dfs(x,l,i,1)*dfs(x,i+1,r,0))); } return dp[x][l][r][flag]=ans; } } int main () { int ma=-INF, flag=1; scanf("%d",&n); FOR(i,1,n) scanf("%s%d",s[i],num+i); FOR(i,1,n) ma=max(ma,dfs(i,1,n,1)); printf("%d\n",ma); FOR(i,1,n) if (dp[i][1][n][1]==ma) printf(flag?"%d":" %d",i), flag=0; putchar('\n'); return 0; }