BZOJ 1040 骑士(环套树DP)
如果m=n-1,显然这就是一个经典的树形dp。
现在是m=n,这是一个环套树森林,破掉这个环后,就成了一个树,那么这条破开的边连接的两个顶点不能同时选择。我们可以对这两个点进行两次树形DP根不选的情况。
那么答案就是每个森林的max()之和。
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e-3 # define MOD 1000000007 # define INF (LL)1<<60 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int res=0, flag=0; char ch; if((ch=getchar())=='-') flag=1; else if(ch>='0'&&ch<='9') res=ch-'0'; while((ch=getchar())>='0'&&ch<='9') res=res*10+(ch-'0'); return flag?-res:res; } void Out(int a) { if(a<0) {putchar('-'); a=-a;} if(a>=10) Out(a/10); putchar(a%10+'0'); } const int N=1000005; //Code begin... struct Edge{int p, next, flag;}edge[N<<1]; int head[N], cnt=2, node[N], res[2], p; bool vis[N]; LL dp[2][N][2]; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;} void dfs(int x, int fa) { vis[x]=true; for (int i=head[x]; i; i=edge[i].next) { int v=edge[i].p; if (v==fa) continue; if (vis[v]==true) { if (p==0) res[0]=x, res[1]=v, p=1, edge[i].flag=edge[i^1].flag=1; continue; } dfs(v,x); } } void dfs_dp(int x, int fa, int flag) { for (int i=head[x]; i; i=edge[i].next) { int v=edge[i].p; if (v==fa||edge[i].flag) continue; dfs_dp(v,x,flag); dp[flag][x][0]+=max(dp[flag][v][0],dp[flag][v][1]); dp[flag][x][1]+=dp[flag][v][0]; } dp[flag][x][1]+=node[x]; } int main () { int n, u, w; LL ans=0; scanf("%d",&n); FOR(i,1,n) scanf("%d%d",&w,&u), add_edge(u,i), add_edge(i,u), node[i]=w; FOR(i,1,n) { if (vis[i]) continue; p=0; dfs(i,0); dfs_dp(res[0],0,0); dfs_dp(res[1],0,1); ans+=max(dp[0][res[0]][0],dp[1][res[1]][0]); } printf("%lld\n",ans); return 0; }