BZOJ 1025 游戏(分组背包)
题目所谓的序列长度实际上就是各循环节的lcm+1.
所以题目等价于求出 一串数之和等于n,这串数的lcm种数。
由唯一分解定理可以联想到只要把每个素数的幂次放在一个分组里,然后对整体做一遍分组背包就行了。
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e-3 # define MOD 1000000007 # define INF (LL)1<<60 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int res=0, flag=0; char ch; if((ch=getchar())=='-') flag=1; else if(ch>='0'&&ch<='9') res=ch-'0'; while((ch=getchar())>='0'&&ch<='9') res=res*10+(ch-'0'); return flag?-res:res; } void Out(int a) { if(a<0) {putchar('-'); a=-a;} if(a>=10) Out(a/10); putchar(a%10+'0'); } const int N=1005; //Code begin... int pri[N]; LL dp[N][N]; void init(int n) { mem(pri,0); FOR(i,2,n) { if (!pri[i]) pri[++pri[0]]=i; for (int j=1; j<=pri[0]&&pri[j]<=n/i; ++j) { pri[pri[j]*i]=1; if (i%pri[j]==0) break; } } } int main () { int n; scanf("%d",&n); init(n); FOR(i,0,n) dp[0][i]=1; FOR(i,1,pri[0]) FOR(j,0,n) { dp[i][j]=dp[i-1][j]; for (int k=pri[i]; k<=j; k*=pri[i]) dp[i][j]+=dp[i-1][j-k]; } printf("%lld\n",dp[pri[0]][n]); return 0; }