BZOJ 1016 最小生成树计数
需要明确的是 对于图的每一个MST,所有的边权排序后的结果都是一样的。
先求出图中的一个MST,对于图中权值和MST中相同的一些边,可以对MST中的边替换形成新的MST,这种替换的条件是和原来的MST的这条边构成的联通性应该是一样的。
可以用dfs找出对于原MST中每个权值的边有多少种选择。最后用乘法原理算一下即可。
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e-3 # define MOD 1000000007 # define INF (LL)1<<60 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int res=0, flag=0; char ch; if((ch=getchar())=='-') flag=1; else if(ch>='0'&&ch<='9') res=ch-'0'; while((ch=getchar())>='0'&&ch<='9') res=res*10+(ch-'0'); return flag?-res:res; } void Out(int a) { if(a<0) {putchar('-'); a=-a;} if(a>=10) Out(a/10); putchar(a%10+'0'); } const int N=105; //Code begin... struct Edge{int u, v, w, flag;}edge[1005]; struct Node{int num, w;}minw[N]; int fa[N], n, m, fa1[N], p[15], now=0; int find(int x) { int s, temp; for (s=x; fa[s]>=0; s=fa[s]) ; while (s!=x) temp=fa[x], fa[x]=s, x=temp; return s; } void union_set(int x, int y) { int temp = fa[x]+fa[y]; if (fa[x]>fa[y]) fa[x]=y, fa[y]=temp; else fa[y]=x, fa[x] = temp; } bool comp(Edge a, Edge b){return a.w<b.w;} bool Kruskal() { mem(fa,-1); sort(edge+1,edge+m+1,comp); int cnt=0; FOR(i,1,m) { int u=edge[i].u, v=edge[i].v, w=edge[i].w, t1=find(u), t2=find(v); if (t1!=t2) { union_set(t1,t2); ++cnt; edge[i].flag=1; if (minw[now].w!=w) minw[++now].w=w, minw[now].num=1; else minw[now].num++; } if (cnt==n-1) break; } return cnt==n-1; } void copy(){FOR(i,1,n) fa[i]=fa1[i];} int dfs(int fisrt, int last, int ci, int num) { if (ci==num) { copy(); FOR(i,1,num) { int u=find(edge[p[i]].u), v=find(edge[p[i]].v); if (u!=v) union_set(u,v); else return 0; } return 1; } if (fisrt>last) return 0; int ans=0; FOR(i,fisrt,last) p[ci+1]=i, ans+=dfs(i+1,last,ci+1,num); return ans; } int main () { scanf("%d%d",&n,&m); FOR(i,1,m) scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w); if (Kruskal()==0) {puts("0"); return 0;} int i=1, ans=1; mem(fa,-1); FOR(j,1,now) { while (edge[i].w!=minw[j].w) ++i; int cnt=0; FOR(k,1,n) fa1[k]=fa[k]; while (edge[i].w==minw[j].w) ++i, ++cnt; ans=ans*dfs(i-cnt,i-1,0,minw[j].num)%31011; copy(); FOR(k,i-cnt,i-1) if (edge[k].flag) union_set(find(edge[k].u),find(edge[k].v)); } printf("%d\n",ans); return 0; }