cf Round 587

A.Duff and Weight Lifting(思维)

显然题目中只有一种情况可以合并 2^a+2^a=2^(a+1)。
我们把给出的mi排序一下,模拟合并操作即可。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-3
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int res=0, flag=0;
    char ch;
    if((ch=getchar())=='-') flag=1;
    else if(ch>='0'&&ch<='9') res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')  res=res*10+(ch-'0');
    return flag?-res:res;
}
void Out(int a) {
    if(a<0) {putchar('-'); a=-a;}
    if(a>=10) Out(a/10);
    putchar(a%10+'0');
}
const int N=1000005;
//Code begin...

int a[N];

int main ()
{
    int n;
    scanf("%d",&n);
    FOR(i,1,n) scanf("%d",a+i);
    sort(a+1,a+n+1);
    int now=a[1], cnt=1, ans=0;
    FOR(i,2,n) {
        if (now==a[i]) cnt++;
        else {
            while (now!=a[i]&&cnt>1) {
                ++now;
                ans+=(cnt&1);
                cnt/=2;
            }
            if (now==a[i]) cnt++;
            else ans+=cnt, cnt=1, now=a[i];
        }
    }
    while (cnt) ans+=(cnt&1), cnt/=2;
    printf("%d\n",ans);
    return 0;
}
View Code

 

B.Duff in Beach(DP)

这是一个计数问题。考虑DP。
考虑L<=n*k.
由于n*k<=1e6.我们把a数组变成b数组。令dp[i]表示以b[i]结尾的方法数。
那么dp[i]=sigma(上一段的数小于b[i]的dp[i])。
sigma我们可以用类似前缀和的办法维护一下。

考虑L>n*k.
此时数组太大不好直接构造,我们考虑把n*k的元素的最后n个数字平移到n*k后面的数字。
发现方法数是一样的。我们再统计每个数字可以平移多少次就OK了。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-3
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int res=0, flag=0;
    char ch;
    if((ch=getchar())=='-') flag=1;
    else if(ch>='0'&&ch<='9') res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')  res=res*10+(ch-'0');
    return flag?-res:res;
}
void Out(int a) {
    if(a<0) {putchar('-'); a=-a;}
    if(a>=10) Out(a/10);
    putchar(a%10+'0');
}
const int N=1000005;
//Code begin...

int to[N];
LL dp[N], sum[N];
PII a[N];

int comp(const void * a, const void * b){return *(int *)a-*(int *)b;}
int main ()
{
    int n, k, cnt=0;
    LL l, ans=0;
    scanf("%d%lld%d",&n,&l,&k);
    FO(i,0,n) a[i].first=Scan(), a[i].second=i;
    sort(a,a+n);
    to[a[0].second]=++cnt;
    FO(i,1,n) {
        if (a[i].first==a[i-1].first) to[a[i].second]=cnt;
        else to[a[i].second]=++cnt;
    }
    int m=(l%n?l%n:n);
    FO(i,0,min((LL)n*k,l)) {
        if (i && i%n==0) {
            FOR(j,1,cnt) sum[j]=0;
            FO(j,i-n,i) sum[to[j%n]]=(sum[to[j%n]]+dp[j])%MOD;
            FOR(j,1,cnt) sum[j]=(sum[j-1]+sum[j])%MOD;
         }
        if (i<n) dp[i]=1;
        else dp[i]=(1+sum[to[i%n]])%MOD;
        ans=(ans+dp[i])%MOD;
        if (l>n*k && i>=n*k-n) ans=(ans+((l-i-1)/n%MOD)*dp[i]%MOD)%MOD;
    }
    printf("%lld\n",ans);
    return 0;
}
View Code

 

C.Duff in the Army(LCA)

题目要求维护树的路径上的标号最小的a个数。(a<=10)

维护路径上的某些东西一般有LCT,LCA,树形DP,树链刨分,树分治。
由于题目允许离线,于是我们可以类似LCA预处理出一坨东西。
fa[x][i][]里面的是x节点到x节点的2^i个父亲中的标号最小的10个数。
合并的时候归并一下,最后求答案的时候就类似求LCA一样边爬边归并。
细节很多。
复杂度O((n+q)*logn).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-3
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int res=0, flag=0;
    char ch;
    if((ch=getchar())=='-') flag=1;
    else if(ch>='0'&&ch<='9') res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')  res=res*10+(ch-'0');
    return flag?-res:res;
}
void Out(int a) {
    if(a<0) {putchar('-'); a=-a;}
    if(a>=10) Out(a/10);
    putchar(a%10+'0');
}
const int N=100005;
//Code begin...

struct Edge{int p, next;}edge[N<<1];
int head[N], cnt=1;
int bin[20], fa[N][20][12], dep[N], temp[12], ans[12];
VI node[N];

void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
void bin_init(){bin[0]=1; FO(i,1,20) bin[i]=bin[i-1]<<1;}
void merge(int x, int nn)
{
    int y=fa[x][nn-1][0], i=1, j=1, k=1;
    while (k<=10) {
        if (fa[x][nn-1][i]==0 && fa[y][nn-1][j]==0) break;
        if (fa[x][nn-1][i]==0) fa[x][nn][k++]=fa[y][nn-1][j++];
        else if (fa[y][nn-1][j]==0) fa[x][nn][k++]=fa[x][nn-1][i++];
        else {
            fa[x][nn][k++]=min(fa[x][nn-1][i], fa[y][nn-1][j]);
            if (fa[x][nn-1][i]<fa[y][nn-1][j]) ++i;
            else ++j;
        }
    }
}
void merge_(int x, int nn)
{
    int i=1, j=1, k=1;
    mem(temp,0);
    FOR(l,1,10) temp[l]=ans[l];
    mem(ans,0);
    while (k<=10) {
        if (fa[x][nn][i]==0&&temp[j]==0) break;
        if (fa[x][nn][i]==0) ans[k++]=temp[j++];
        else if (temp[j]==0) ans[k++]=fa[x][nn][i++];
        else {
            ans[k++]=min(fa[x][nn][i],temp[j]);
            if (fa[x][nn][i]<temp[j]) ++i;
            else if (fa[x][nn][i]>temp[j]) ++j;
            else ++i, ++j;
        }
    }
}
void dfs(int x, int fat)
{
    fa[x][0][0]=fat;
    if (node[fat].size()) for (int i=0; i<min((int)node[fat].size(),10); ++i) fa[x][0][i+1]=node[fat][i];
    for (int i=1; bin[i]<=dep[x]; ++i) fa[x][i][0]=fa[fa[x][i-1][0]][i-1][0], merge(x,i);
    for (int i=head[x]; i; i=edge[i].next) {
        int v=edge[i].p;
        if (v==fat) continue;
        dep[v]=dep[x]+1;
        dfs(v,x);
    }
}
void sol(int x, int y)
{
    int l=0, j=0, k=1;
    while (k<=10) {
        if (l>=node[x].size()&&j>=node[y].size()) break;
        if (l>=node[x].size()) ans[k++]=node[y][j], ++j;
        else if (j>=node[y].size()) ans[k++]=node[x][l], ++l;
        else {
            ans[k++]=min(node[x][l],node[y][j]);
            if (node[x][l]<node[y][j]) ++l;
            else if (node[x][l]>node[y][j]) ++j;
            else ++l, ++j;
        }
    }
    if (dep[x]<dep[y]) swap(x,y);
    int t=dep[x]-dep[y];
    for (int i=0; bin[i]<=t; ++i) if (bin[i]&t) merge_(x,i), x=fa[x][i][0];
    for (int i=19; i>=0; --i) if (fa[x][i][0]!=fa[y][i][0]) merge_(x,i), merge_(y,i), x=fa[x][i][0], y=fa[y][i][0];
    if (x==y) return ;
    else {merge_(x,0); return ;}
}
int main ()
{
    bin_init();
    int n, m, q, u, v, a;
    scanf("%d%d%d",&n,&m,&q);
    FO(i,1,n) scanf("%d%d",&u,&v), add_edge(u,v), add_edge(v,u);
    FOR(i,1,m) scanf("%d",&u), node[u].pb(i);
    FOR(i,1,n) sort(node[i].begin(),node[i].end());
    dfs(1,0);
    while (q--) {
        scanf("%d%d%d",&u,&v,&a);
        mem(ans,0);
        sol(u,v);
        int mark;
        for (mark=1; mark<=11&&ans[mark]; ++mark) ;
        mark=min(mark-1,a);
        printf("%d",mark);
        FOR(i,1,mark) printf(" %d",ans[i]);
        putchar('\n');
    }
    return 0;
}
View Code

 

D.Duff in Mafia(待填坑)

 

E.Duff as a Queen(线段树+线性基)

给出一个数列(n<=2e5),有两种操作(q<=2e5)
1.给定区间[l,r]内的数都异或k。
2.询问区间[l,r]能够相互异或出几种数。

对于第2种操作,显然可以对区间[l,r]搞出线性基,答案就是1<<(线性基的个数).
注意到一个性质。
对于a1 a2 a3 ... an. 这些数的线性基等于 a1 a1^a2 a2^a3 ... an-1^an.的线性基。
大概就是由于这两个数列能够互相异或出来,于是能异或出来的数字种数都是相等的。

于是第一个操作就是 al^k al+1^k al+2^k ... ar^k.
对于线性基就是 al-1^a1^k a1^al+1 al+1^al+2 ... ar-1^ar ar^ar+1^k.

于是我们需要维护两个数列 一个原数列, 一个线性基与原数列相同的数列(次数列)
用BIT或者线段树维护原数列。
用线段树维护次数列的线性基。

答案即为所求。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-3
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int res=0, flag=0;
    char ch;
    if((ch=getchar())=='-') flag=1;
    else if(ch>='0'&&ch<='9') res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')  res=res*10+(ch-'0');
    return flag?-res:res;
}
void Out(int a) {
    if(a<0) {putchar('-'); a=-a;}
    if(a>=10) Out(a/10);
    putchar(a%10+'0');
}
const int N=200005;
//Code begin...

int a[N], seg[N<<2][32], tree[N], n, q, ans[32];

void add(int x, int val){while (x<=n) tree[x]^=val, x+=lowbit(x);}
int sum(int x){int ans=0; while (x) ans^=tree[x], x-=lowbit(x); return ans;}
void push_up(int p)
{
    mem(seg[p],0);
    FOR(c,0,30) seg[p][c]=seg[p<<1][c];
    for (int c=30; c>=0; --c) {
        int x=seg[p<<1|1][c];
        for (int i=c; i>=0; --i) {
            if (!(x>>i)) continue;
            if (!seg[p][i]) {seg[p][i]=x; break;}
            x^=seg[p][i];
        }
    }
}
void bulid(int p, int l, int r)
{
    if (l==r) {
        for (int c=30; c>=0; --c) if (a[l]>>c) {seg[p][c]=a[l]; break;}
        return ;
    }
    int mid=(l+r)>>1;
    bulid(lch); bulid(rch); push_up(p);
}
void update(int p, int l, int r, int L, int K)
{
    if (L<l || L>r) return ;
    if (L==l && L==r) {
        a[L]^=K;
        mem(seg[p],0);
        for (int c=30; c>=0; --c) if (a[L]>>c) {seg[p][c]=a[L]; break;}
    }
    else {
        int mid=(l+r)>>1;
        update(lch,L,K); update(rch,L,K); push_up(p);
    }
}
void query(int p, int l, int r, int L, int R)
{
    if (R<l || L>r) return ;
    if (L<=l && R>=r) {
        for (int i=30; i>=0; --i) {
            int x=seg[p][i];
            for (int c=i; c>=0; --c) {
                if (!(x>>c)) continue;
                if (!ans[c]) {ans[c]=x; break;}
                x^=ans[c];
            }
        }
    }
    else {
        int mid=(l+r)>>1;
        query(lch,L,R), query(rch,L,R);
    }
}
int main ()
{
    int flag, l, r, k;
    scanf("%d%d",&n,&q);
    FOR(i,1,n) scanf("%d",a+i);
    for (int i=n; i>=1; --i) a[i]^=a[i-1], add(i,a[i]);
    bulid(1,1,n);
    while (q--) {
        scanf("%d%d%d",&flag,&l,&r);
        if (flag==1) {
            scanf("%d",&k);
            update(1,1,n,l,k); add(l,k);
            if (r!=n) update(1,1,n,r+1,k), add(r+1,k);
        }
        else {
            mem(ans,0);
            if (l!=r) query(1,1,n,l+1,r);
            int temp=sum(l);
            for (int i=30; i>=0; --i) {
                if (!(temp>>i)) continue;
                if (!ans[i]) {ans[i]=temp; break;}
                temp^=ans[i];
            }
            int cnt=0;
            FOR(i,0,30) if (ans[i]) ++cnt;
            printf("%d\n",1<<cnt);
        }
    }
    return 0;
}
View Code

 

F.Duff is Mad(待填坑)

posted @ 2017-02-09 19:15  free-loop  阅读(211)  评论(0编辑  收藏  举报