cf Round 594

A.Warrior and Archer(思维)

战士一定会ban掉当前边缘的位置。而战士和射手就会选择剩下的最远的两点。
我们让剩下的最远的两点最近就达到了均衡。
于是我们枚举战士ban掉的边缘,ban的次数是一定的。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-3
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int res=0, flag=0;
    char ch;
    if((ch=getchar())=='-') flag=1;
    else if(ch>='0'&&ch<='9') res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')  res=res*10+(ch-'0');
    return flag?-res:res;
}
void Out(int a) {
    if(a<0) {putchar('-'); a=-a;}
    if(a>=10) Out(a/10);
    putchar(a%10+'0');
}
const int N=200005;
//Code begin...

int a[N];

int main ()
{
    int n;
    scanf("%d",&n);
    FOR(i,1,n) scanf("%d",a+i);
    sort(a+1,a+n+1);
    int ans=INF;
    int k=n-(n-2)/2;
    FOR(i,1,n+1-k) ans=min(ans,a[i+k-1]-a[i]);
    printf("%d\n",ans);
    return 0;
}
View Code

 

B.Max and Bike(二分)

二分时间t,然后用控制精度check就行了。关键是这题的单调性不明显。

另外用fabs控制精度不行,浮点数误差。。。以后就控制二分次数吧。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-7
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int res=0, flag=0;
    char ch;
    if((ch=getchar())=='-') flag=1;
    else if(ch>='0'&&ch<='9') res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')  res=res*10+(ch-'0');
    return flag?-res:res;
}
void Out(int a) {
    if(a<0) {putchar('-'); a=-a;}
    if(a>=10) Out(a/10);
    putchar(a%10+'0');
}
const int N=100005;
//Code begin...

int n;
double s, f, r, v;
bool check(double t)
{
    double S=v*t, l=2*pi*r;
    double ss=S-floor(S/l)*l;
    double T=S+fabs(sin(ss/2/r))*2*r;
    return T>=f-s;
}
int main ()
{
    scanf("%d%lf%lf",&n,&r,&v);
    while (n--) {
        scanf("%lf%lf",&s,&f);
        double l=0, r=1e12;
        int tot=100;
        while (tot--) {
            double mid=(l+r)/2;
            if (check(mid)) r=mid;
            else l=mid;
        }
        printf("%.7lf\n",l);
    }
    return 0;
}
View Code

 

C.Edo and Magnets(贪心)

求平面n个点至多减少k个点后,用一个矩形覆盖它们,求这个矩形面积的最小值。(k<=10)

显然把边界的点先减掉最好,于是我们枚举四个边界上的点减少多少个后更新答案就ok了。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-3
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int res=0, flag=0;
    char ch;
    if((ch=getchar())=='-') flag=1;
    else if(ch>='0'&&ch<='9') res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')  res=res*10+(ch-'0');
    return flag?-res:res;
}
void Out(int a) {
    if(a<0) {putchar('-'); a=-a;}
    if(a>=10) Out(a/10);
    putchar(a%10+'0');
}
const int N=100005;
//Code begin...

struct node{int x, y;}p[N];
bool cmp1(int a,int b){return p[a].x<p[b].x;}
bool cmp2(int a,int b){return p[a].x>p[b].x;}
bool cmp3(int a,int b){return p[a].y<p[b].y;}
bool cmp4(int a,int b){return p[a].y>p[b].y;}
int pos1[N], pos2[N], pos3[N], pos4[N], last[N];

int main()
{
    int n, k;
    scanf("%d%d",&n,&k);
    FO(i,0,n) {
        int x1,y1,x2,y2;
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        p[i].x=(x1+x2); p[i].y=(y1+y2);
        pos1[i]=pos2[i]=pos3[i]=pos4[i]=i;
    }
    sort(pos1,pos1+n,cmp1); sort(pos2,pos2+n,cmp2);
    sort(pos3,pos3+n,cmp3); sort(pos4,pos4+n,cmp4);
    int now=0;
    LL ans = 1LL<<62;
    FOR(a,0,k) FOR(b,0,k) FOR(c,0,k) FOR(d,0,k) {
        now++;
        int cnt = 0;
        FO(i,0,a) if(last[pos1[i]]!=now) last[pos1[i]]=now,cnt++;
        FO(i,0,b) if(last[pos2[i]]!=now) last[pos2[i]]=now,cnt++;
        FO(i,0,c) if(last[pos3[i]]!=now) last[pos3[i]]=now,cnt++;
        FO(i,0,d) if(last[pos4[i]]!=now) last[pos4[i]]=now,cnt++;
        if(cnt!=k) continue;
        LL Maxx=-1LL<<62,Maxy=-1LL<<62,Minx=1LL<<62,Miny=1LL<<62;
        FO(i,0,n) {
            if(last[i]!=now) {
                Maxx=max(Maxx,p[i].x*1LL);
                Minx=min(Minx,p[i].x*1LL);
                Maxy=max(Maxy,p[i].y*1LL);
                Miny=min(Miny,p[i].y*1LL);
            }
        }
        LL x=Maxx-Minx, y=Maxy-Miny;
        x=max(x,2LL); y=max(y,2LL);
        ans=min(ans,x*y);
    }
    printf("%lld\n",ans/4);
}
View Code

 

D.REQ(BIT+积性函数+逆元)

询问区间积[l,r]的欧拉函数。n,q<=2e5,ai<=1e6

因为欧拉函数是积性函数,我们化解一下式子,把不同的素因子拿出来维护一下就行了。
离散化后用树状数组离线处理区间[l,r]内的不同质因子,类似于HH的项链。
之后求答案的时候用逆元搞搞就行了。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-3
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int res=0, flag=0;
    char ch;
    if((ch=getchar())=='-') flag=1;
    else if(ch>='0'&&ch<='9') res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')  res=res*10+(ch-'0');
    return flag?-res:res;
}
void Out(int a) {
    if(a<0) {putchar('-'); a=-a;}
    if(a>=10) Out(a/10);
    putchar(a%10+'0');
}
const int N=200005;
//Code begin...

typedef struct{int l, r, id;}Node;
Node qq[N];
int a[N], pri[N*11], n;
LL sum[N], isum[N], mul[N], imul[N], tree[N], res[N];
queue<int> to[N];
map<int, int> vis;
VI vc[N];

void get_prim()
{
    FOR(i,2,2020000) {
        if (!pri[i]) pri[++pri[0]]=i, vis[i]=pri[0];
        for (int j=1; j<=pri[0]&&pri[j]<=2020000/i; ++j) {
            pri[pri[j]*i]=1;
            if (i%pri[j]==0) break;
        }
    }
}
bool comp(Node a, Node b){return a.l<b.l;}
LL inv(LL a, LL m){
    if (a==1) return 1;
    return inv(m%a,m)*(m-m/a)%m;
}
void add(int x, LL val)
{
    while (x<=n) tree[x]=tree[x]*val%MOD, x+=lowbit(x);
}
LL query(int x)
{
    LL ans=1;
    while (x) ans=ans*tree[x]%MOD, x-=lowbit(x);
    return ans;
}
int main ()
{
    get_prim();
    FO(i,1,pri[0]) mul[i]=(LL)(pri[i]-1)*inv(pri[i],MOD)%MOD, imul[i]=(LL)pri[i]*inv(pri[i]-1,MOD)%MOD;
    int q;
    n=Scan();
    FOR(i,1,n) tree[i]=1;
    sum[0]=isum[0]=1;
    FOR(i,1,n) {
        a[i]=Scan(), sum[i]=sum[i-1]*a[i]%MOD, isum[i]=isum[i-1]*inv(a[i],MOD)%MOD;
        int temp=a[i];
        for (int j=1; pri[j]*pri[j]<=temp; ++j) {
            if (temp%pri[j]==0) {
                to[j].push(i), vc[i].pb(j), temp/=pri[j];
                while (temp%pri[j]==0) temp/=pri[j];
            }
        }
        if (temp>1) to[vis[temp]].push(i), vc[i].pb(vis[temp]);
    }
    q=Scan();
    FOR(i,1,q) qq[i].l=Scan(), qq[i].r=Scan(), qq[i].id=i;
    sort(qq+1,qq+q+1,comp);
    FO(i,1,pri[0]) if (!to[i].empty()) add(to[i].front(),mul[i]);
    int now=1;
    FOR(i,1,q) {
        while (now<qq[i].l) {
            int size=vc[now].size();
            for (int j=0; j<size; ++j) {
                int k=vc[now][j];
                add(to[k].front(),imul[k]), to[k].pop();
                if (!to[k].empty()) add(to[k].front(),mul[k]);
            }
            now++;
        }
        res[qq[i].id]=sum[qq[i].r]*isum[qq[i].l-1]%MOD*query(qq[i].r)%MOD;
    }
    FOR(i,1,q) printf("%lld\n",res[i]);
    return 0;
}
View Code

 

E.Cutting the Line(待填坑)

posted @ 2017-01-16 14:50  free-loop  阅读(169)  评论(0编辑  收藏  举报