Data
Stay hungry,Stay foolish!

导航

 

重新索引

reindex重置索引,如果索引值不存在,就引入缺失值

参数介绍

参数 说明
index 用作索引的新序列
method 插值
fill_vlaue 引入缺失值时的替代NaN
limit 最大填充量
level 指定级别上匹配简单索引,否则选取子集
copy 默认为True
实例:
import pandas as pd
import numpy as np
from pandas import Series

obj = Series([4.5,7.2,-5.3,3.6],index=['d','b','a','c'])
obj

d    4.5
b    7.2
a   -5.3
c    3.6
dtype: float64


obj2 = obj.reindex(['a','b','c','d','e'])
obj2

a   -5.3
b    7.2
c    3.6
d    4.5
e    NaN
dtype: float64

既然有了缺失值,那么怎么填充,下面这方法

obj.reindex(['a','b','c','d','e'],fill_value=0)

a   -5.3
b    7.2
c    3.6
d    4.5
e    0.0
dtype: float64

对于DataFrame,reindex可以修改行索引,列索引或者都修改,默认重新索引行

frame = pd.DataFrame(np.arange(9).reshape(3,3),index=['b','c','a'])
frame.reindex(index=['a','b','c','d'],columns=[2,1,0])

	2	1	0
a	8.0	7.0	6.0
b	2.0	1.0	0.0
c	5.0	4.0	3.0
d	NaN	NaN	NaN

利用ix的标签索引功能

frame.ix[['d','c','b','a'],[0,1,2]]

	0	1	2
d	NaN	NaN	NaN
c	3.0	4.0	5.0
b	0.0	1.0	2.0
a	6.0	7.0	8.0
posted on 2018-11-01 11:43  进击中的青年  阅读(557)  评论(0编辑  收藏  举报