Data
Stay hungry,Stay foolish!

导航

 

数据转换

移除重复数据
import pandas as pd
import numpy as np
from pandas import Series

data = pd.DataFrame(
    {'k1':['one']*3+['two']*4,
     'k2':[1,1,2,3,3,4,4]})
data

     k1	 k2
0	one	 1
1	one	 1
2	one	 2
3	two	 3
4	two	 3
5	two	 4
6	two	 4
duplicated方法返回一个布尔型Series,表示各行是否是重复行
data.duplicated()

0    False
1     True
2    False
3    False
4     True
5    False
6     True
dtype: bool
drop_duplicates方法,直接返回去除重后的DataFrame
data.drop_duplicates()

     k1	k2
0	one	 1
2	one	 2
3	two	 3
5	two	 4
可以指定列进行重复项判断
data['v1'] = range(7)
data.drop_duplicates(['k1'])

    k1	k2	v1
0	one	1	0
3	two	3	3
duplicated和drop_duplicates保留的都是第一个出现的值,传入keep='last'则保留最后一个

data

    k1	k2	v1
0	one	1	0
1	one	1	1
2	one	2	2
3	two	3	3
4	two	3	4
5	two	4	5
6	two	4	6

# 默认保留相同选项的是第一个
data.drop_duplicates(['k1','k2'])

    k1	k2	v1
0	one	1	0
2	one	2	2
3	two	3	3
5	two	4	5

# 保留相同选项里的最后一个
data.drop_duplicates(['k1','k2'],keep='last')

    k1	k2	v1
1	one	1	1
2	one	2	2
4	two	3	4
6	two	4	6

利用函数或映射进行数据转换

Series的map方法可以接收一个函数或含有映射关系的字典型对象
data1 = pd.DataFrame({
    'food':['bacon','pulled pork','bacon','Pastrami',
           'corned beef','Bacon','pastrami','honey ham',
            'nova lox'],
    'ounces':[4,3,12,6,7.5,8,3,5,6]
})

data1

     food	    ounces
0	bacon	    4.0
1	pulled pork	3.0
2	bacon	    12.0
3	Pastrami	6.0
4	corned beef	7.5
5	Bacon	    8.0
6	pastrami	3.0
7	honey ham	5.0
8	nova lox	6.0

# 添加肉类来源这一列
meat_to_animal = {
    'bacon':'pig',
    'pulled pork':'pig',
    'pastrami':'cow',
    'corned beef':'cow',
    'honey ham':'pig',
    'nova lox':'salmon'
}

# 根据键映射对应的来源,str.lower的原因是肉类里面的键全是小写,但是food里的键有的是大写,想要映射需要一一对应
data1['animal'] = data1['food'].map(str.lower).map(meat_to_animal)
data1

    food	   ounces  animal
0	bacon	    4.0	    pig
1	pulled pork	3.0	    pig
2	bacon	    12.0	pig
3	Pastrami	6.0	    cow
4	corned beef	7.5	    cow
5	Bacon	    8.0	    pig
6	pastrami	3.0	    cow
7	honey ham	5.0	    pig
8	nova lox	6.0	    salmon

lambda函数关系映射


# 映射出字典的值是谁
data1['food'].map(lambda x:meat_to_animal[x.lower()])

0       pig
1       pig
2       pig
3       cow
4       cow
5       pig
6       cow
7       pig
8    salmon
Name: food, dtype: object
替换值
data2 = Series([1.,-999.,2.,-999.,-1000.,3.])
data2

0       1.0
1    -999.0
2       2.0
3    -999.0
4   -1000.0
5       3.0
dtype: float64

data2.replace(-999,np.nan)

0       1.0
1       NaN
2       2.0
3       NaN
4   -1000.0
5       3.0
dtype: float64
替换多个值

data2.replace([-999,-1000],np.nan)

0    1.0
1    NaN
2    2.0
3    NaN
4    NaN
5    3.0
dtype: float64
对不同的值进行不同的替换,传入一个关系组成列表
data2.replace([-999,-1000],[np.nan,0])

0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64
传入的参数是字典映射
data2.replace({-999:np.nan,-1000:0})

0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

重命名轴索引

data3 = pd.DataFrame(np.arange(12).reshape(3,4),index=['Ohio','Colorado','New York'],columns=['one','two','three','four'])
data3

           one	two	 three	four
Ohio	    0	  1	   2	3
Colorado	4	  5	   6	7
New York	8	  9	   10	11
# 这样会直接修改原始数据
data3.index = data3.index.map(str.upper)
data3

# 如果想要创建数据集的转换版,也就是副本
data3.rename(index=str.title,columns=str.upper)

           ONE	TWO	THREE FOUR
Ohio	    0	 1	 2	   3
Colorado	4	 5	 6	   7
New York	8	 9	 10	   11

# rename可以结合字典型对象一对一进行轴标签的更新
data3.rename(index={'Ohio':'New_Ohio'},columns={'three':'peekaboo'})

           one	 two	 peekaboo	four
OHIO	    0	  1	       2	    3
COLORADO	4	  5	       6	    7
NEW YORK	8	  9	       10	    11

# rename自带复制功能,如果希望就地修改,传入inplace=True即可
data3.rename(index={'OHIO':'inplace'},inplace=True)
data3

           one	   two	   three	four
inplace	    0	    1	    2	     3
COLORADO	4	    5	    6	     7
NEW YORK	8	    9	    10	     11

离散化和面元划分

cut和qcut对分量和分组分析非常重要
# 将下面这些数据划分为18-25,26-35,35-60,60以上
args = [20,22,25,27,21,23,37,31,61,45,41,32]
bins = [18,25,35,60,100]
cats = pd.cut(args,bins)
# 左开右闭
cats

[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]
Length: 12
Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]

# 直接得到区间范围的数字,跟'区间'的数学符号一样,圆括号表示开端,方括号表示闭端,可以通过right=False进行修改
pd.value_counts(cats)

(18, 25]     5
(35, 60]     3
(25, 35]     3
(60, 100]    1
dtype: int64

# 左闭右开
cut1 = pd.cut(args,bins,right=False)
cut1

[[18, 25), [18, 25), [25, 35), [25, 35), [18, 25), ..., [25, 35), [60, 100), [35, 60), [35, 60), [25, 35)]
Length: 12
Categories (4, interval[int64]): [[18, 25) < [25, 35) < [35, 60) < [60, 100)]

pd.value_counts(cut1)

[25, 35)     4
[18, 25)     4
[35, 60)     3
[60, 100)    1
dtype: int64

# 不想干巴巴用那么丑的区间名做索引,指定区间的名称
group_names=['Youth','YoungAdult','MiddleAged','Senior']
cut2 = pd.cut(args,bins,labels=group_names)
cut2

[Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, MiddleAged, YoungAdult]
Length: 12
Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]

pd.value_counts(cut2)

Youth         5
MiddleAged    3
YoungAdult    3
Senior        1
dtype: int64
自动划分区间
data = np.random.rand(20)
# precision保留的是小数点的位数
pd.cut(data,4,precision=2)

[(0.27, 0.5], (0.031, 0.27], (0.74, 0.97], (0.031, 0.27], (0.27, 0.5], ..., (0.74, 0.97], (0.031, 0.27], (0.27, 0.5], (0.74, 0.97], (0.5, 0.74]]
Length: 20
Categories (4, interval[float64]): [(0.031, 0.27] < (0.27, 0.5] < (0.5, 0.74] < (0.74, 0.97]]

# qcut是一个类似于cut的函数,它可以根据样本分位数对数据进行划分。
# 和cut不同的是,cut无法使各个面元中含有相同数量的数据点,二qcut可以
data4 = np.random.randn(1000)
cat4 = pd.qcut(data4, 4)
cat4

[(-3.114, -0.713], (-0.713, -0.0478], (-0.0478, 0.618], (-0.713, -0.0478], (0.618, 2.917], ..., (-0.0478, 0.618], (-0.0478, 0.618], (-3.114, -0.713], (-0.0478, 0.618], (0.618, 2.917]]
Length: 1000
Categories (4, interval[float64]): [(-3.114, -0.713] < (-0.713, -0.0478] < (-0.0478, 0.618] < (0.618, 2.917]]

# 区间出来是数量是相等的
pd.value_counts(cat4)

(0.618, 2.917]       250
(-0.0478, 0.618]     250
(-0.713, -0.0478]    250
(-3.114, -0.713]     250
dtype: int64

# 跟cut一样,也可以设置自定义的分位数
pd.qcut(data4,[0,0.1,0.5,0.9,1.])

[(-3.114, -1.263], (-1.263, -0.0478], (-0.0478, 1.247], (-1.263, -0.0478], (1.247, 2.917], ..., (-0.0478, 1.247], (-0.0478, 1.247], (-1.263, -0.0478], (-0.0478, 1.247], (-0.0478, 1.247]]
Length: 1000
Categories (4, interval[float64]): [(-3.114, -1.263] < (-1.263, -0.0478] < (-0.0478, 1.247] < (1.247, 2.917]]

检测和过滤异常值

# seed参数生成一个随机数的起始位置,使用了后,后面的随机数不会发生变化,否则每次生成一次变化一次
# seed参数的值随意,没有任何用
np.random.seed(0)
data5 = pd.DataFrame(np.random.randn(1000,4))
data5.describe()

            0	        1	         2	       3
count	1000.000000	1000.000000	1000.000000	1000.000000
mean	-0.062966	-0.002087	-0.025777	-0.010981
std	     0.983517	 0.967146	 0.983671	 0.993891
min	    -3.740101	-3.046143	-3.116857	-3.392300
25%	    -0.755720	-0.683680	-0.684833	-0.686776
50%	    -0.029995	-0.023210	-0.025068	-0.038192
75%	     0.604792	 0.652095	 0.624139	 0.648778
max	     2.929096	 2.662727	 3.801660	 3.427539

# 假设你想要找出某列中绝对值大小超过3的值
col = data5[3]
col[np.abs(col)>3]

861    3.427539
919   -3.392300
Name: 3, dtype: float64

# 选出全部含有超过3或-3的值的行,你可以利用布尔型DataFrame以及any方法
data[(np.abs(data5)>3)] # 找出绝对值大于3的值,不满足的为NaN
data[(np.abs(data5)>3).any(1)] # 找出绝对值大于3的行

0	1	2	3
147	 0.823681	-2.929552	 1.721550	 1.039882
263	-1.326474	 0.873638	-1.556238	-1.072714
504	 0.991843	-1.198124	-0.060144	-1.802440
770	 1.251980	 0.801589	 0.644481	 1.106683
779	 1.014776	 0.088887	 0.785261	 0.849345
861	-0.736245	-1.258751	 1.385519	 0.509164
865	-0.034140	-0.825346	-0.921655	-0.023471
919	-0.580442	-0.347443	 0.309293	-1.018100
938	-0.327996	 0.703850	 0.227200	 2.131917

# 将值限制在区间-3到3以内,np.sign代表的是数组的正负,正值为1,负值为-1,0为0
data5[np.abs(data)>3] = data5*3
data5.describe()

            0	         1	         2	       3
count	1000.000000	1000.000000	1000.000000	1000.000000
mean	-0.062966	-0.002087	-0.025777	-0.010981
std	     0.983517	 0.967146	 0.983671	 0.993891
min	    -3.740101	-3.046143	-3.116857	-3.392300
25%	    -0.755720	-0.683680	-0.684833	-0.686776
50%	    -0.029995	-0.023210	-0.025068	-0.038192
75%	     0.604792	 0.652095	 0.624139	 0.648778
max	     2.929096	 2.662727	 3.801660	 3.427539
posted on 2018-12-03 16:28  进击中的青年  阅读(707)  评论(0编辑  收藏  举报