Data
Stay hungry,Stay foolish!

导航

 

合并数据集

  • pandas.merge 可根据一个或多个键将不同DataFrame中的行连接起来。
  • pandas.concat 可以沿着一条轴将多个对象堆叠到一起。
  • combine_first

merge

默认情况下,merge做的是'inner'连接;结果中的键是交集

和数据库中的left、right以及outer连接这些外连全部是形成笛卡尔积

merge合并的数据如果是多对多,则是笛卡尔积的形式合并


import pandas as pd
import numpy as np
df1 = pd.DataFrame({'key1':['b','b','a','c','a','a','b'],
                    'data1':range(7)
                   })
df2 = pd.DataFrame({'key1':['a','b','d'],
                    'data2':range(3)
                   })

df1

    key1	data1
0	b	0
1	b	1
2	a	2
3	c	3
4	a	4
5	a	5
6	b	6

df2

    key1	data2
0	a	0
1	b	1
2	d	2

# merge默认会合并相同的列名,但是最好显示指定一下,on用于连接左右都存在的列名,如果只有一侧有,那不能使用on,使用left_on或者right_on
pd.merge(df1, df2, on='key1',how='left')

    key1	data1	data2
0	b	0	1.0
1	b	1	1.0
2	a	2	0.0
3	c	3	NaN
4	a	4	0.0
5	a	5	0.0
6	b	6	1.0

# 如果两个对象的列名不同,可以详细显示合并的各列情况
df3 = pd.DataFrame({'key1':['b','b','a','c','a','a','b'],
                    'data1':range(7)
                   })
df4 = pd.DataFrame({'key2':['a','b','d'],
                    'data2':range(3)
                   })

# left_on,right_on用于连接存在于一方的列
pd.merge(df3,df4,left_on='key1',right_on='key2')

    key1	data1	key2	data2
0	b	0	b	1
1	b	1	b	1
2	b	6	b	1
3	a	2	a	0
4	a	4	a	0
5	a	5	a	0

# how参数里面填写连接的类别,有left、right、outer分别对应左连接,右连接,全连接
pd.merge(df3, df4,left_on='key1',right_on='key2',how='outer')

    key1	data1	key2	data2
0	b	0.0	b	1.0
1	b	1.0	b	1.0
2	b	6.0	b	1.0
3	a	2.0	a	0.0
4	a	4.0	a	0.0
5	a	5.0	a	0.0
6	c	3.0	NaN	NaN
7	NaN	NaN	d	2.0

# 示例数据源
df5 = pd.DataFrame({'key':['b','b','a','c','a','b'],
                    'data1':range(6)
                   })
df6 = pd.DataFrame({'key':['a','b','a','b','d'],
                    'data2':range(5)
                   })
df5
    key	data1
0	b	0
1	b	1
2	a	2
3	c	3
4	a	4
5	b	5

df6
    key	data2
0	a	0
1	b	1
2	a	2
3	b	3
4	d	4

# 左外连接的笛卡尔积,左右3个b,右有2个b,2*3=6个b,又会形成并集
pd.merge(df5,df6,how='left')

    key	data1	data2
0	b	0	1.0
1	b	0	3.0
2	b	1	1.0
3	b	1	3.0
4	a	2	0.0
5	a	2	2.0
6	c	3	NaN
7	a	4	0.0
8	a	4	2.0
9	b	5	1.0
10	b	5	3.0

left = pd.DataFrame({'key1':['foo','foo','bar'],
                    'key2':['one','two','one'],
                     'lval':[1,2,3]})
right = pd.DataFrame({'key1':['foo','foo','bar','bar'],
                    'key2':['one','one','one','two'],
                     'rval':[4,5,6,7]})

left

    key1	key2	lval
0	foo	one	1
1	foo	two	2
2	bar	one	3

right

    key1	key2	rval
0	foo	one	4
1	foo	one	5
2	bar	one	6
3	bar	two	7

# 合并多个列名,需要把他们当做一个整体看,然后做笛卡尔积
pd.merge(left,right,on=['key1','key2'],how='outer')

    key1	key2	lval	rval
0	foo	one	1.0	4.0
1	foo	one	1.0	5.0
2	foo	two	2.0	NaN
3	bar	one	3.0	6.0
4	bar	two	NaN	7.0

# suffixes用于指定附加到左右两个dataframe对象的列标签的名,下面是是原始的命名,默认加_x,_y
pd.merge(left,right,on='key1')

    key1	key2_x	lval	key2_y	rval
0	foo	one	1	one	4
1	foo	one	1	one	5
2	foo	two	2	one	4
3	foo	two	2	one	5
4	bar	one	3	one	6
5	bar	one	3	two	7

# suffixes就是指定一下名字,会形成下面的效果
pd.merge(left,right,on='key1',suffixes=('_left','_right'))

    key1	key2_left	lval	key2_right	rval
0	foo	one	1	one	4
1	foo	one	1	one	5
2	foo	two	2	one	4
3	foo	two	2	one	5
4	bar	one	3	one	6
5	bar	one	3	two	7
索引上的合并

left1 = pd.DataFrame({'key':['a','b','a','a','b','c'],
                     'value':range(6)})
right1 = pd.DataFrame({'group_val':[3.5,7]},index=['a','b'])

left1
    
    key	value
0	a	0
1	b	1
2	a	2
3	a	3
4	b	4
5	c	5

right1
    
    group_val
a	3.5
b	7.0

# 上面是用key的列值去合并右侧的行索引,right_index开启将行索引用作连接的键,如果是左侧的表,同理有left_index,默认交集

pd.merge(left1, right1, left_on='key',right_index=True)

    key	value	group_val
0	a	0	3.5
2	a	2	3.5
3	a	3	3.5
1	b	1	7.0
4	b	4	7.0

# 指定并集
pd.merge(left1, right1, left_on='key',right_index=True,how='outer')

    key	value	group_val
0	a	0	3.5
2	a	2	3.5
3	a	3	3.5
1	b	1	7.0
4	b	4	7.0
5	c	5	NaN
层次化索引的合并
lefth = pd.DataFrame({'key1':['Ohio','Ohio','Ohio','Nevada','Nevada'],
                      'key2':[2000,2001,2002,2001,2002],
                       'data':np.arange(5.)})

# lefth.set_index(['key1','key2']).T 将列转为层次化行索引
lefth

    key1	key2	data
0	Ohio	2000	0.0
1	Ohio	2001	1.0
2	Ohio	2002	2.0
3	Nevada	2001	3.0
4	Nevada	2002	4.0


right1 = pd.DataFrame(np.arange(12).reshape(6,2),index=[
    ['Nevada','Nevada','Ohio','Ohio','Ohio','Ohio'],
    [2001,2000,2000,2000,2001,2002]
],columns=['data1','data2'])

right1

            data1	data2
Nevada	2001	0	1
        2000	2	3
Ohio	2000	4	5
        2000	6	7
        2001	8	9
        2002	10	11

# 对于层次化索引的合并,左侧的列名是右侧的行索引,故开启right_index

pd.merge(lefth,right1,left_on=['key1','key2'],right_index=True)

    key1	key2	data	data1	data2
0	Ohio	2000	0.0	4	5
0	Ohio	2000	0.0	6	7
1	Ohio	2001	1.0	8	9
2	Ohio	2002	2.0	10	11
3	Nevada	2001	3.0	0	1

# 合并双方的索引
left2 = pd.DataFrame([[1.,2.],[3.,4.],[5.,6.]],index=['a','c','e'],columns=['Ohio','Nevada'])
right2 = pd.DataFrame([[7.,8.],[9.,10.],[11.,12.],[13,14]],index=['b','c','d','e'],columns=['Missouri','Alabama'])

pd.merge(left2,right2,how='outer',left_index=True,right_index=True)

    Ohio	Nevada	Missouri	Alabama
a	1.0	2.0	NaN	NaN
b	NaN	NaN	7.0	8.0
c	3.0	4.0	9.0	10.0
d	NaN	NaN	11.0	12.0
e	5.0	6.0	13.0	14.0

# join方法,更方便实现按索引合并
left2.join(right2,how='outer')

    Ohio	Nevada	Missouri	Alabama
a	1.0	2.0	NaN	NaN
b	NaN	NaN	7.0	8.0
c	3.0	4.0	9.0	10.0
d	NaN	NaN	11.0	12.0
e	5.0	6.0	13.0	14.0

left3 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3','A4'],
                     'B': ['B0', 'B1', 'B2', 'B3','b4'],
                     'key': ['K0', 'K1', 'K0', 'K1','C1']})

right3 = pd.DataFrame({'C': ['C0', 'C1'],
                      'D': ['D0', 'D1']},
                    index=['K0', 'K1'])

# 如果列的值是另一个dataframe的行索引
left3.join(right3,on='key')

    A	B	key	C	D
0	A0	B0	K0	C0	D0
1	A1	B1	K1	C1	D1
2	A2	B2	K0	C0	D0
3	A3	B3	K1	C1	D1
4	A4	b4	C1	NaN	NaN

# 对于简单的索引合并,你可以向join传入一组DataFrame
another = pd.DataFrame([[7.,8.],[9.,10.],[11.,12.],[16.,17.]],index=['a','c','e','f'],columns=['New York','Oregon'])

left2.join([right2,another])

    Ohio	Nevada	Missouri	Alabama	New York	Oregon
a	1.0	2.0	NaN	NaN	7.0	8.0
c	3.0	4.0	9.0	10.0	9.0	10.0
e	5.0	6.0	13.0	14.0	11.0	12.0
posted on 2018-11-23 18:27  进击中的青年  阅读(1244)  评论(0编辑  收藏  举报