平衡二叉树(AVL)的理解和实现(Java)

AVL的定义

平衡二叉树:是一种特殊的二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1。从平衡二叉树的名字中可以看出来,它是一种高度平衡的二叉排序树。那么什么叫做高度平衡呢?意思就是要么它是一颗空树,要么它的左子树和右子树都是平衡二叉树,且左子树和右子树的深度只差的绝对值绝对不超过1。
平衡因子:将二叉树上节点的左子树深度减去右子树深度的值称为平衡因子BF。则平衡二叉树上所有节点的平衡因子只可能是1,-1,0
只要二叉树上有一个节点的平衡因子的绝对值大于1,那么该二叉树就是不平衡的。
最小不平衡子树:距离插入节点最近的,且平衡因子的绝对值大于1的节点为根的子树,我们称之为最小不平衡子树。

平衡二叉树实现原理

平衡二叉树构建的基本思想就是在构建二叉排序树的过程中,每当插入一个节点时,先检查是否因插入而破坏了树的平衡性,若是,找出最小不平衡树。在保持二叉排序树特性的前提下,调整最小不平衡子树中各节点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。

旋转操作:
  • 右旋:最小不平衡子树的BF和它的子树BF符号相同且最小不平衡子树的BF大于0
  • 左旋:最小不平衡子树的BF和它的子树BF符号相同且最小不平衡子树的BF小于零
  • 左右旋:最小不平衡子树的BF与它的子树的BF符号相反时且最小不平衡子树的BF大于0时,需要对节点先进行一次向左旋使得符号相同后,在向右旋转一次完成平衡操作。
  • 右左旋:最小不平衡子树的BF与它的子树的BF符号相反时且最小不平衡子树的BF小于0时,需要对节点先进行一次向右旋转使得符号相同时,在向左旋转一次完成平衡操作。

放一张自己理解的图:
在这里插入图片描述

平衡二叉树的构建

节点定义

平衡二叉树节点数据结构和二叉排序树相差不大:

public class AVLNode {

	public AVLNode parent;
	public AVLNode leftChild, rightChild;
	public int data;
	
	public AVLNode(AVLNode parent, AVLNode leftChild, AVLNode rightChild, int data) {
		this.parent = parent;
		this.leftChild = leftChild;
		this.rightChild = rightChild;
		this.data = data;
	}
	
	public AVLNode(int data) {
		this(null, null, null, data);
	}
	
	public AVLNode(AVLNode parent, int data) {
		this.parent = parent;
		this.data = data;
	}
}
插入节点

在进行插入时,我们需要考虑插入的这个节点会不会破坏二叉树的平衡,如果平衡被打破,那么我们需要考虑如何调整二叉树的结构使得平衡恢复。
我们以插入后左子树比右子树BF大2的所有情况举例,下面的图只是代表着那个被打破平衡的点的子树,并不代表整棵树。
在这里插入图片描述
这是第一种情况,其中A和B节点是平衡二叉树树中某一节点集合,现在插入C,可以从图上看到,要想打破平衡,节点C必须插入B上
第二种情况:
在这里插入图片描述
其中的A、B、C、D是平衡二叉树中某一节点集合,现在插入节点F,平衡被打破,那么F需要插入到D上才能打破平衡。
第三种情况:
在这里插入图片描述
其中A、B、C、D、E为平衡二叉树中某一节点集合,并不表示整棵树。现在插入F节点,平衡被打破,那么F只能插在D、E上。
通过观察发现第二、三中情况其实是第一种情况衍变而来,如分别在A节点和B节点上增加节点就变成了第二三中情况。
对于第一种情况进行研究:
在这里插入图片描述
要使A节点的BF小于2,我们需要对该节点集合的结构进行相应调整,根据二叉排序树的性质我们知道A节点的值一定比B节点大,而C节点的值一定比B节点的大,所以我们可以将B节点来替换A节点,让A节点做B节点的右孩子。若A节点有父节点,那么A的父节点的子节点要指向B节点,同时A节点的父节点为B,也就是进行右旋操作:
在这里插入图片描述
而对于第一种情况的这种图:
在这里插入图片描述
我们发现使用上面的逻辑好像并不能完成平衡,执行完之后是这样子的:
在这里插入图片描述
这样子根本没有平衡。所以不能仅旋转一次。我们发现对于A节点它的BF等于2,对于B节点它的BF值等于-1,符号相反,所以我们需要执行左右旋,先将最小不平衡子树和它的子树的BF符号相同,在进行平衡。
对于B节点执行左旋,那么C节点会变成A节点的左子节点,同时B节点会变成C节点的左子节点,这样就又回到了最初的情况:
在这里插入图片描述
在执行右旋,完成平衡化:在这里插入图片描述
对于第二种情况和第三种情况实际上分析思路和第一种情况一样。
右旋代码:

	/**
	 * 右旋
	 * @param node
	 * @return
	 */
	public AVLNode rightRotation(AVLNode node) {
		if(node != null) {
			
			AVLNode leftChild = node.leftChild;
			node.leftChild = leftChild.rightChild;
			// 如果leftChild的右节点存在,则需将该右节点的父节点指给node节点
			if(leftChild.rightChild != null) {  
				leftChild.rightChild.parent = node;
			}
			leftChild.parent = node.parent;
			if(node.parent == null) {
				this.root = leftChild;
			}
			else if(node.parent.rightChild == node) {  // 即node节点在它原父节点的右子树中
				node.parent.rightChild = leftChild;
			}
			else if(node.parent.leftChild == node) {
				node.parent.leftChild = leftChild;
			}
			
			leftChild.rightChild = node;
			node.parent = leftChild;
			return leftChild;
		}
		
		return null;
	}

左旋代码:

	/**
	 * 左旋
	 * @param node
	 * @return
	 */
	public AVLNode leftRotation(AVLNode node) {
		
		if(node != null) {
			AVLNode rightChild = node.rightChild;
			node.rightChild = rightChild.leftChild;
			if(rightChild.leftChild != null) {
				rightChild.leftChild.parent = node;
			}
			rightChild.parent = node.parent;
			if(node.parent == null) {
				this.root = rightChild;
			}
			else if(node.parent.rightChild == node) {
				node.parent.rightChild = rightChild;
			}
			else if(node.parent.leftChild == node) {
				node.parent.leftChild = rightChild;
			}
			rightChild.leftChild = node;
			node.parent = rightChild;
			return rightChild;
		}
		
		return null;
	}

那么现在有一个问题,怎么判别被打破的平衡要经历哪种操作才能达到平衡呢?
根据上面的原理,分为四种情况,这四种情况可以划分为两大类:

  • 第一大类,A节点的左子树高度比右子树高度高2,最终需要经过右旋操作(可能需要先左后右)
  • 第二大类,A节点的左子树高度比右子树高度低2,最终需要经过左旋操作(可能需要先右后左)

所以我们插入新节点的思路就是,在插入节点之后,判断插入的节点是在A的左子树还是右子树。
插入节点代码:

	/**
	 * 插入节点
	 * @param data
	 */
	public void put(int data) {
		putData(root, data);
	}
	
	private boolean putData(AVLNode node, int data) {
		if(node == null) {
			node  = new AVLNode(data);
			root = node;
			return true;
		}
		int t;
		AVLNode p;
		AVLNode temp = node;
		do {
			p = temp;
			t = temp.data - data;
			if(t < 0) {
				temp = temp.rightChild;
			}
			else if(t > 0) {
				temp = temp.leftChild;
			}
			else {
				return false;
			}
		} while(temp != null);
		
		if(t < 0) {
			p.rightChild = new AVLNode(p, data);
		}
		else if(t > 0) {
			p.leftChild = new AVLNode(p, data);
		}
		rebuild(p); //平衡二叉树的方法
		return true;
		
	}

对于rebuild()方法:

	/**
	 * 平衡二叉树的方法
	 * @param node
	 */
	public void rebuild(AVLNode node) {
		while(node != null) {
			if(calcNodeBalanceValue(node) == MAX_LEFT) { //左子树高
				fixAfterInsertion(node, LEFT);
			}
			else if(calcNodeBalanceValue(node) == MAX_RIGHT) { //右子树高
				fixAfterInsertion(node, RIGHT);
			}
			node = node.parent;
		}
	}

这段代码从插入节点的父节点开始,向上回朔的去查找失去平衡的节点,通过calcNodeBalanceValue()方法来结算当前节点的左右子树高度差,判断是2(MAX_LEFT)还是-2(MAX_RIGHT)。
计算节点BF的相应方法:

	/**
	 * 计算node节点的BF值
	 * @param node
	 * @return
	 */
	public int calcNodeBalanceValue(AVLNode node) {
		if(node != null) {
			return getHeightByNode(node);
		}
		return 0;
	}
	
	private int getHeightByNode(AVLNode node) {
		if(node == null) {
			return 0;
		}
		return getChildDepth(node.leftChild) - getChildDepth(node.rightChild);
	}
	
	private int getChildDepth(AVLNode node) {
		if(node == null) {
			return 0;
		}
		return 1 + Math.max(getChildDepth(node.leftChild), getChildDepth(node.rightChild));
	}

在找到相应的类型后,执行fixAfterInsertion()来完成对不同类型的调整方法。

	/**
	 * 调整树的结构
	 * @param node
	 * @param type
	 */
	public void fixAfterInsertion(AVLNode node, int type) {
		if(type == LEFT) {
			AVLNode leftChild = node.leftChild;
			if(leftChild.leftChild != null) {  //右旋
				rightRotation(node);
			}
			else if(leftChild.rightChild != null) {   //左右旋
				leftRotation(leftChild);
				rightRotation(node);
			}
		}
		else if(type == RIGHT) {
			AVLNode rightChild = node.rightChild;
			if(rightChild.rightChild != null) {   //左旋
				leftRotation(node);
			}
			else if(rightChild.leftChild != null) {   //右左旋
				rightRotation(rightChild);
				leftRotation(node);
			}
		}
	}

根据我参考其他博主的想法,通过左右子树是否为空的判断来决定它是单旋还是双旋,原因:如果代码执行到了这个方法,那么肯定平衡被打破了,就暂且拿第一个大类来说 ,A的左子树高度要比右子树高2,意味平衡被打破了,再去结合上面分析的第一种情况,当插入元素后树结构是以下结构,那肯定是单旋。
在这里插入图片描述
如果是以下结构,那肯定是这种结构,由上面分析,这种结构必须的双旋。
在这里插入图片描述
所以,这里是根据插入的节点是位于B节点的左右方来决定是单旋还是双旋(在这里,不保证结论完全正确,若有错误,还望大家指正)。
以上是对平衡二叉树的插入操作和平衡话操作。

中序遍历:

对于平衡二叉树和二叉排序树的遍历是相同的,因为平衡二叉树就是一个特殊的二叉排序树。

	/**
	 * 中序遍历
	 */
	public void middOrderErgodic() {
		this.middOrderErgodic(this.root);
	}
	public void middOrderErgodic(AVLNode node) {
		if(node != null) {
			this.middOrderErgodic(node.leftChild);
			System.out.print(node.data + ", ");
			this.middOrderErgodic(node.rightChild);
		}
	}
根据key值获得指定的节点:
	/**
	 * 获得指定节点
	 * @param key
	 * @return
	 */
	public AVLNode getNode(int key) {
	
		AVLNode node = root;
		int t;
		do {
			t = node.data - key;
			if(t > 0) {
				node = node.leftChild;
			}
			else if(t < 0) {
				node = node.rightChild;
			}
			else {
				return node;
			}
		} while(node != null);
		return null;
	}
对平衡二叉树进行层序遍历:
	/**
	 * 层序遍历
	 */
	public void sequenceErgodic() {
		if(this.root == null) {
			return;
		}
		Queue<AVLNode> queue = new LinkedList<>();
		AVLNode temp = null;
		queue.add(this.root);
		while(!queue.isEmpty()) {
			temp = queue.poll();
			System.out.println("当前节点值:" + temp.data + ", BF:" + calcNodeBalanceValue(temp));
			if(temp.leftChild != null) {
				queue.add(temp.leftChild);
			}
			if(temp.rightChild != null) {
				queue.add(temp.rightChild);
			}
		}
	}

采用队列,将一层所有的节点保存在一个队列中,并按序输出。

获得平衡二叉树指定节点的后继:
	/***
	 * 获得指定节点的后继
	 * 找到node节点的后继节点
     * 1、先判断该节点有没有右子树,如果有,则从右节点的左子树中寻找后继节点,没有则进行下一步
     * 2、查找该节点的父节点,若该父节点的右节点等于该节点,则继续寻找父节点,
     *   直至父节点为Null或找到不等于该节点的右节点。
     * 理由:
     *      后继节点一定比该节点大,若存在右子树,则后继节点一定存在右子树中,这是第一步的理由
     *      若不存在右子树,则也可能存在该节点的某个祖父节点(即该节点的父节点,或更上层父节点)的右子树中,
     *      对其迭代查找,若有,则返回该节点,没有则返回null
	 * @param node
	 * @return
	 */
	public AVLNode getSuccessor(AVLNode node) {
		if(node.rightChild != null) {
			AVLNode rightChild=  node.rightChild;
			while(rightChild.leftChild != null) {
				rightChild = rightChild.leftChild;
			}
			return rightChild;
		}
		AVLNode parent = node.parent;
		while(parent != null && (node == parent.rightChild)) {
			node = parent;
			parent = parent.parent;
		}
		return parent;
	}

这里的思想我也是看了半天,首先我们对于节点后继应该是在该节点右子树中最小的值,但是因为在插入时结构进行了调整,节点后继不在该节点右子树中,那么这时应该查找该节点的父节点,若该父节点的右节点等于该节点,则继续寻找父节点,直至父节点为Null或找到不等于该节点的右节点。

删除节点

要注意的是,需要删除节点后的二叉树检测是否有平衡打破的问题,如果平衡被打破,应该重新跳转当前二叉树结构,以恢复平衡化

	/**
	 * 删除指定val值的节点
	 * @param val
	 * @return
	 */
	public boolean delete(int val) {
		AVLNode node = getNode(val);
		if(node == null) {
			return false;
		}
		boolean flag = false;
		AVLNode p = null;
		AVLNode parent = node.parent;
		AVLNode leftChild = node.leftChild;
		AVLNode rightChild = node.rightChild;
		if(leftChild == null && rightChild == null) {
			if(parent != null) {
				if(parent.leftChild == node) {
					parent.leftChild = null;
				}
				else if(parent.rightChild == node) {
					parent.rightChild = null;
				}
			}
			else {
				this.root = null;
			}
			
			p = parent;
			node = null;
			flag = true;
		}
		else if(leftChild == null && rightChild != null) {
			if(parent != null && parent.data > val) {
				parent.leftChild = rightChild;
			}
			else if(parent != null && parent.data < val) {
				parent.rightChild = rightChild;
			}
			else {
				this.root = rightChild;
			}
			p = parent;
			node = null;
			flag = true;
		}
		else if(leftChild != null && rightChild == null) {
			if(parent != null &&  parent.data > val) {
				parent.leftChild = leftChild;
			}
			else if(parent != null && parent.data < val) {
				parent.rightChild = leftChild;
			}
			else {
				this.root = leftChild;
			}
			
			p = parent;
			node = null;
			flag = true;
		}
		else if(leftChild != null && rightChild != null) {
			AVLNode successor = getSuccessor(node);
			int tempData = successor.data;
			if(delete(tempData)) {
				node.data = tempData;
			}
			p = successor;
			successor = null;
			flag = true;
		}
		
		if(flag) {
			this.rebuild(p);
		}
		return flag;	
	}

完整代码

package 平衡二叉树;

import java.util.LinkedList;
import java.util.Queue;

public class MyAVLTree {

	private AVLNode root;
	private final int LEFT = 1;
	private final int RIGHT = -1;
	private final int MAX_LEFT = 2;
	private final int MAX_RIGHT = -2;
	
	/**
	 * 插入节点
	 * @param data
	 */
	public void put(int data) {
		putData(root, data);
	}
	
	private boolean putData(AVLNode node, int data) {
		if(node == null) {
			node  = new AVLNode(data);
			root = node;
			return true;
		}
		int t;
		AVLNode p;
		AVLNode temp = node;
		do {
			p = temp;
			t = temp.data - data;
			if(t < 0) {
				temp = temp.rightChild;
			}
			else if(t > 0) {
				temp = temp.leftChild;
			}
			else {
				return false;
			}
		} while(temp != null);
		
		if(t < 0) {
			p.rightChild = new AVLNode(p, data);
		}
		else if(t > 0) {
			p.leftChild = new AVLNode(p, data);
		}
		rebuild(p);
		return true;
		
	}
	
	/**
	 * 平衡二叉树的方法
	 * @param node
	 */
	public void rebuild(AVLNode node) {
		while(node != null) {
			if(calcNodeBalanceValue(node) == MAX_LEFT) {
				fixAfterInsertion(node, LEFT);
			}
			else if(calcNodeBalanceValue(node) == MAX_RIGHT) {
				fixAfterInsertion(node, RIGHT);
			}
			node = node.parent;
		}
	}
	
	
	/**
	 * 调整树的结构
	 * @param node
	 * @param type
	 */
	public void fixAfterInsertion(AVLNode node, int type) {
		if(type == LEFT) {
			AVLNode leftChild = node.leftChild;
			if(leftChild.leftChild != null) {  //右旋
				rightRotation(node);
			}
			else if(leftChild.rightChild != null) {   //左右旋
				leftRotation(leftChild);
				rightRotation(node);
			}
		}
		else if(type == RIGHT) {
			AVLNode rightChild = node.rightChild;
			if(rightChild.rightChild != null) {   //左旋
				leftRotation(node);
			}
			else if(rightChild.leftChild != null) {   //右左旋
				rightRotation(rightChild);
				leftRotation(node);
			}
		}
	}
	
	
	/**
	 * 右旋
	 * @param node
	 * @return
	 */
	public AVLNode rightRotation(AVLNode node) {
		if(node != null) {
			
			AVLNode leftChild = node.leftChild;
			node.leftChild = leftChild.rightChild;
			// 如果leftChild的右节点存在,则需将该右节点的父节点指给node节点
			if(leftChild.rightChild != null) {  
				leftChild.rightChild.parent = node;
			}
			leftChild.parent = node.parent;
			if(node.parent == null) {
				this.root = leftChild;
			}
			else if(node.parent.rightChild == node) {  // 即node节点在它原父节点的右子树中
				node.parent.rightChild = leftChild;
			}
			else if(node.parent.leftChild == node) {
				node.parent.leftChild = leftChild;
			}
			
			leftChild.rightChild = node;
			node.parent = leftChild;
			return leftChild;
		}
		
		return null;
	}
	
	/**
	 * 左旋
	 * @param node
	 * @return
	 */
	public AVLNode leftRotation(AVLNode node) {
		
		if(node != null) {
			AVLNode rightChild = node.rightChild;
			node.rightChild = rightChild.leftChild;
			if(rightChild.leftChild != null) {
				rightChild.leftChild.parent = node;
			}
			rightChild.parent = node.parent;
			if(node.parent == null) {
				this.root = rightChild;
			}
			else if(node.parent.rightChild == node) {
				node.parent.rightChild = rightChild;
			}
			else if(node.parent.leftChild == node) {
				node.parent.leftChild = rightChild;
			}
			rightChild.leftChild = node;
			node.parent = rightChild;
			return rightChild;
		}
		
		return null;
	}
	
	/**
	 * 计算node节点的BF值
	 * @param node
	 * @return
	 */
	public int calcNodeBalanceValue(AVLNode node) {
		if(node != null) {
			return getHeightByNode(node);
		}
		return 0;
	}
	
	private int getHeightByNode(AVLNode node) {
		if(node == null) {
			return 0;
		}
		return getChildDepth(node.leftChild) - getChildDepth(node.rightChild);
	}
	
	private int getChildDepth(AVLNode node) {
		if(node == null) {
			return 0;
		}
		return 1 + Math.max(getChildDepth(node.leftChild), getChildDepth(node.rightChild));
	}
	
	
	/**
	 * 中序遍历
	 */
	public void middOrderErgodic() {
		this.middOrderErgodic(this.root);
	}
	public void middOrderErgodic(AVLNode node) {
		if(node != null) {
			this.middOrderErgodic(node.leftChild);
			System.out.print(node.data + ", ");
			this.middOrderErgodic(node.rightChild);
		}
	}
	
	
	/**
	 * 删除指定val值的节点
	 * @param val
	 * @return
	 */
	public boolean delete(int val) {
		AVLNode node = getNode(val);
		if(node == null) {
			return false;
		}
		boolean flag = false;
		AVLNode p = null;
		AVLNode parent = node.parent;
		AVLNode leftChild = node.leftChild;
		AVLNode rightChild = node.rightChild;
		if(leftChild == null && rightChild == null) {
			if(parent != null) {
				if(parent.leftChild == node) {
					parent.leftChild = null;
				}
				else if(parent.rightChild == node) {
					parent.rightChild = null;
				}
			}
			else {
				this.root = null;
			}
			
			p = parent;
			node = null;
			flag = true;
		}
		else if(leftChild == null && rightChild != null) {
			if(parent != null && parent.data > val) {
				parent.leftChild = rightChild;
			}
			else if(parent != null && parent.data < val) {
				parent.rightChild = rightChild;
			}
			else {
				this.root = rightChild;
			}
			p = parent;
			node = null;
			flag = true;
		}
		else if(leftChild != null && rightChild == null) {
			if(parent != null &&  parent.data > val) {
				parent.leftChild = leftChild;
			}
			else if(parent != null && parent.data < val) {
				parent.rightChild = leftChild;
			}
			else {
				this.root = leftChild;
			}
			
			p = parent;
			node = null;
			flag = true;
		}
		else if(leftChild != null && rightChild != null) {
			AVLNode successor = getSuccessor(node);
			int tempData = successor.data;
			if(delete(tempData)) {
				node.data = tempData;
			}
			p = successor;
			successor = null;
			flag = true;
		}
		
		if(flag) {
			this.rebuild(p);
		}
		return flag;	
	}
	
	
	/**
	 * 获得指定节点
	 * @param key
	 * @return
	 */
	public AVLNode getNode(int key) {
	
		AVLNode node = root;
		int t;
		do {
			t = node.data - key;
			if(t > 0) {
				node = node.leftChild;
			}
			else if(t < 0) {
				node = node.rightChild;
			}
			else {
				return node;
			}
		} while(node != null);
		return null;
	}
	
	
	/***
	 * 获得指定节点的后继
	 * 找到node节点的后继节点
     * 1、先判断该节点有没有右子树,如果有,则从右节点的左子树中寻找后继节点,没有则进行下一步
     * 2、查找该节点的父节点,若该父节点的右节点等于该节点,则继续寻找父节点,
     *   直至父节点为Null或找到不等于该节点的右节点。
     * 理由,后继节点一定比该节点大,若存在右子树,则后继节点一定存在右子树中,这是第一步的理由
     *      若不存在右子树,则也可能存在该节点的某个祖父节点(即该节点的父节点,或更上层父节点)的右子树中,
     *      对其迭代查找,若有,则返回该节点,没有则返回null
	 * @param node
	 * @return
	 */
	public AVLNode getSuccessor(AVLNode node) {
		if(node.rightChild != null) {
			AVLNode rightChild=  node.rightChild;
			while(rightChild.leftChild != null) {
				rightChild = rightChild.leftChild;
			}
			return rightChild;
		}
		AVLNode parent = node.parent;
		while(parent != null && (node == parent.rightChild)) {
			node = parent;
			parent = parent.parent;
		}
		return parent;
	}
	
	
	/**
	 * 层序遍历
	 */
	public void sequenceErgodic() {
		if(this.root == null) {
			return;
		}
		Queue<AVLNode> queue = new LinkedList<>();
		AVLNode temp = null;
		queue.add(this.root);
		while(!queue.isEmpty()) {
			temp = queue.poll();
			System.out.println("当前节点值:" + temp.data + ", BF:" + calcNodeBalanceValue(temp));
			if(temp.leftChild != null) {
				queue.add(temp.leftChild);
			}
			if(temp.rightChild != null) {
				queue.add(temp.rightChild);
			}
		}
	}
	
	public static void main(String[] args) {
		MyAVLTree bbt = new MyAVLTree();
        bbt.put(3);
        bbt.put(2);
        bbt.put(1);
        bbt.put(4);
        bbt.put(5);
        bbt.put(6);
        bbt.put(7);
        bbt.put(10);
        bbt.put(9);
        bbt.middOrderErgodic();
        System.out.println();
        System.out.println("-----各节点平衡状况-----");
        bbt.sequenceErgodic();
        System.out.println();
        bbt.delete(5);
        bbt.delete(2);
        bbt.middOrderErgodic();
        System.out.println();
        System.out.println("-----各节点平衡状况-----");
        bbt.sequenceErgodic();
        System.out.println();
        
	}
}

参考:

《大话数据结构》
https://www.cnblogs.com/qm-article/p/9349681.html
https://www.cnblogs.com/zhangbaochong/p/5164994.html

posted @ 2019-03-13 20:49  如是说  阅读(2024)  评论(0编辑  收藏  举报