python重拾基础第四天
本节内容
- 迭代器&生成器
- 装饰器
- Json & pickle 数据序列化
- 软件目录结构规范
- 作业:ATM项目开发
1. 列表生成式,迭代器&生成器
列表生成式
我现在有个需求,看列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],我要求你把列表里的每个值加1,你怎么实现?你可能会想到2种方式
a = [1,3,4,6,7,7,8,9,11] for index,i in enumerate(a): a[index] +=1 print(a)
匿名函数写法
>>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> a = map(lambda x:x+1, a) >>> a <map object at 0x101d2c630> >>> for i in a:print(i) ... 3 5 7 9 11 文艺青年版
列表生成式写法
>>> a = [i+1 for i in range(10)] >>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()
函数获得generator的下一个返回值:
>>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
我们讲过,generator保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
当然,上面这种不断调用next(g)
实在是太变态了,正确的方法是使用for
循环,因为generator也是可迭代对象:
>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 0
所以,我们创建了一个generator后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return 'done'
注意,赋值语句:
a, b = b, a + b
相当于:
t = (b, a + b) # t是一个tuple a = t[0] b = t[1]
但不必显式写出临时变量t就可以赋值。
上面的函数可以输出斐波那契数列的前N个数:
>>> fib(10) 1 1 2 3 5 8 13 21 34 55 done
仔细观察,可以看出,fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib
函数变成generator,只需要把print(b)
改为yield b
就可以了:yield保存函数中断状态,返回当前状态的值。
def fib(max): n,a,b = 0,0,1 while n < max: #print(b) yield b a,b = b,a+b n += 1 return 'done'
这就是定义generator的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:
>>> f = fib(6) >>> f <generator object fib at 0x104feaaa0>
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
data = fib(10) print(data) print(data.__next__()) print(data.__next__()) print("干点别的事") print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) #输出 <generator object fib at 0x101be02b0> 1 1 干点别的事 2 3 5 8 13
在上面fib
的例子,我们在循环过程中不断调用yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代:
>>> for n in fib(6): ... print(n) ... 1 1 2 3 5 8
但是用for
循环调用generator时,发现拿不到generator的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
>>> g = fib(6) >>> while True: ... try: ... x = next(g) ... print('g:', x) ... except StopIteration as e: ... print('Generator return value:', e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done
关于如何捕获错误,后面的错误处理还会详细讲解。
还可通过yield实现在单线程的情况下实现并发运算的效果,send方法带可以传值,还有Next方法,就是可以唤醒yield
#_*_coding:utf-8_*_ __author__ = 'Alex Li' import time def consumer(name): print("%s 准备吃包子啦!" %name) while True: baozi = yield print("包子[%s]来了,被[%s]吃了!" %(baozi,name)) def producer(name): c = consumer('A') c2 = consumer('B') c.__next__() c2.__next__() print("老子开始准备做包子啦!") for i in range(10): time.sleep(1) print("做了2个包子!") c.send(i) c2.send(i) producer("alex")
另外一个实例,监听文件变化
import time def tail(filename): with open(filename) as f: print(f.read()) f.seek(0, 2) #从文件末尾算起 第一个0是偏移量,第二部分2是文件末尾,0是文件开头,1是当前行 while True: line = f.readline() # 读取文件中新的文本行 if not line: time.sleep(1) continue yield line for line in tail('change'): print(line,end='')
迭代器
我们已经知道,可以直接作用于for
循环的数据类型有以下几种:
一类是集合数据类型,如list
、tuple
、dict
、set
、str
等;
一类是generator
,包括生成器和带yield
的generator function。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象:
>>> from collections import Iterable >>> isinstance([], Iterable) True >>> isinstance({}, Iterable) True >>> isinstance('abc', Iterable) True >>> isinstance((x for x in range(10)), Iterable) True >>> isinstance(100, Iterable) False
而生成器不但可以作用于for
循环,还可以被next()
函数不断调用并返回下一个值,直到最后抛出StopIteration
错误表示无法继续返回下一个值了。
*可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
可以使用isinstance()
判断一个对象是否是Iterator
对象:
>>> from collections import Iterator >>> isinstance((x for x in range(10)), Iterator) True >>> isinstance([], Iterator) False >>> isinstance({}, Iterator) False >>> isinstance('abc', Iterator) False
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
>>> isinstance(iter([]), Iterator) True >>> isinstance(iter('abc'), Iterator) True
你可能会问,为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for
循环本质上就是通过不断调用next()
函数实现的,例如:
for x in [1, 2, 3, 4, 5]: pass
实际上完全等价于:
# 首先获得Iterator对象: it = iter([1, 2, 3, 4, 5]) # 循环: while True: try: # 获得下一个值: x = next(it) except StopIteration: # 遇到StopIteration就退出循环 break
2.装饰器
你是一家视频网站的后端开发工程师,你们网站有以下几个版块
def home(): print("---首页----") def america(): print("----欧美专区----") def japan(): print("----日韩专区----") def henan(): print("----河南专区----")
视频刚上线初期,为了吸引用户,你们采取了免费政策,所有视频免费观看,迅速吸引了一大批用户,免费一段时间后,每天巨大的带宽费用公司承受不了了,所以准备对比较受欢迎的几个版块收费,其中包括“欧美” 和 “河南”专区,你拿到这个需求后,想了想,想收费得先让其进行用户认证,认证通过后,再判定这个用户是否是VIP付费会员就可以了,是VIP就让看,不是VIP就不让看就行了呗。 你觉得这个需求很是简单,因为要对多个版块进行认证,那应该把认证功能提取出来单独写个模块,然后每个版块里调用 就可以了,与是你轻轻的就实现了下面的功能 。
#_*_coding:utf-8_*_ user_status = False #用户登录了就把这个改成True def login(): _username = "alex" #假装这是DB里存的用户信息 _password = "abc!23" #假装这是DB里存的用户信息 global user_status if user_status == False: username = input("user:") password = input("pasword:") if username == _username and password == _password: print("welcome login....") user_status = True else: print("wrong username or password!") else: print("用户已登录,验证通过...") def home(): print("---首页----") def america(): login() #执行前加上验证 print("----欧美专区----") def japan(): print("----日韩专区----") def henan(): login() #执行前加上验证 print("----河南专区----") home() america() henan()
此时你信心满满的把这个代码提交给你的TEAM LEADER审核,没成想,没过5分钟,代码就被打回来了, TEAM LEADER给你反馈是,我现在有很多模块需要加认证模块,你的代码虽然实现了功能,但是需要更改需要加认证的各个模块的代码,这直接违反了软件开发中的一个原则“开放-封闭”原则,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:
- 封闭:已实现的功能代码块不应该被修改
- 开放:对现有功能的扩展开放
这个原则你还是第一次听说,我擦,再次感受了自己这个野生程序员与正规军的差距,BUT ANYWAY,老大要求的这个怎么实现呢?如何在不改原有功能代码的情况下加上认证功能呢?你一时想不出思路,只好带着这个问题回家继续憋,媳妇不在家,去隔壁老王家串门了,你正好落的清静,一不小心就想到了解决方案,不改源代码可以呀,
你师从沙河金角大王时,记得他教过你,高阶函数,就是把一个函数当做一个参数传给另外一个函数,当时大王说,有一天,你会用到它的,没想到这时这个知识点突然从脑子 里蹦出来了,我只需要写个认证方法,每次调用 需要验证的功能 时,直接 把这个功能 的函数名当做一个参数 传给 我的验证模块不就行了么,哈哈,机智如我,如是你啪啪啪改写了之前的代码
#_*_coding:utf-8_*_ user_status = False #用户登录了就把这个改成True def login(func): #把要执行的模块从这里传进来 _username = "alex" #假装这是DB里存的用户信息 _password = "abc!23" #假装这是DB里存的用户信息 global user_status if user_status == False: username = input("user:") password = input("pasword:") if username == _username and password == _password: print("welcome login....") user_status = True else: print("wrong username or password!") if user_status == True: func() # 看这里看这里,只要验证通过了,就调用相应功能 def home(): print("---首页----") def america(): #login() #执行前加上验证 print("----欧美专区----") def japan(): print("----日韩专区----") def henan(): #login() #执行前加上验证 print("----河南专区----") home() login(america) #需要验证就调用 login,把需要验证的功能 当做一个参数传给login # home() # america() login(henan)
你很开心,终于实现了老板的要求,不改变原功能代码的前提下,给功能加上了验证,此时,媳妇回来了,后面还跟着老王,你两家关系 非常 好,老王经常来串门,老王也是码农,你跟他分享了你写的代码,兴奋的等他看完 夸奖你NB,没成想,老王看后,并没有夸你,抱起你的儿子,笑笑说,你这个代码还是改改吧, 要不然会被开除的,WHAT? 会开除,明明实现了功能 呀, 老王讲,没错,你功能 是实现了,但是你又犯了一个大忌,什么大忌?
你改变了调用方式呀, 想一想,现在没每个需要认证的模块,都必须调用你的login()方法,并把自己的函数名传给你,人家之前可不是这么调用 的, 试想,如果 有100个模块需要认证,那这100个模块都得更改调用方式,这么多模块肯定不止是一个人写的,让每个人再去修改调用方式 才能加上认证,你会被骂死的。。。。
你觉得老王说的对,但问题是,如何即不改变原功能代码,又不改变原有调用方式,还能加上认证呢? 你苦思了一会,还是想不出,老王在逗你的儿子玩,你说,老王呀,快给我点思路 ,实在想不出来,老王背对着你问,
老王:学过匿名函数没有?
你:学过学过,就是lambda嘛
老王:那lambda与正常函数的区别是什么?
你:最直接的区别是,正常函数定义时需要写名字,但lambda不需要
老王:没错,那lambda定好后,为了多次调用 ,可否也给它命个名?
你:可以呀,可以写成plus = lambda x:x+1类似这样,以后再调用plus就可以了,但这样不就失去了lambda的意义了,明明人家叫匿名函数呀,你起了名字有什么用呢?
老王:我不是要跟你讨论它的意义 ,我想通过这个让你明白一个事实
说着,老王拿起你儿子的画板,在上面写了以下代码:
def plus(n): return n+1 plus2 = lambda x:x+1
老王: 上面这两种写法是不是代表 同样的意思?
你:是的
老王:我给lambda x:x+1 起了个名字叫plus2,是不是相当于def plus2(x) ?
你:我擦,你别说,还真是,但老王呀,你想说明什么呢?
老王: 没啥,只想告诉你,给函数赋值变量名就像def func_name 是一样的效果,如下面的plus(n)函数,你调用时可以用plus名,还可以再起个其它名字,如
calc = plus
calc(n)
你明白我想传达什么意思了么?
你:。。。。。。。。。。。这。。。。。。嗯 。。。。。不太。。。。明白 。。
老王:。。。。这。。。。。呵呵。。。。。。好吧。。。。,那我在给你点一下,你之前写的下面这段调用 认证的代码
home() login(america) #需要验证就调用 login,把需要验证的功能 当做一个参数传给login # home() # america() login(henan)
你之所改变了调用方式,是因为用户每次调用时需要执行login(henan),类似的。其实稍一改就可以了呀
home() america = login(america) henan = login(henan)
这样你,其它人调用henan时,其实相当于调用了login(henan), 通过login里的验证后,就会自动调用henan功能。
你:我擦,还真是唉。。。,老王,还是你nb。。。不过,等等, 我这样写了好,那用户调用时,应该是下面这个样子
home() america = login(america) #你在这里相当于把america这个函数替换了 henan = login(henan) #那用户调用时依然写 america()
但问题在于,还不等用户调用 ,你的america = login(america)就会先自己把america执行了呀。。。。,你应该等我用户调用 的时候 再执行才对呀,不信我试给你看。。。
老王:哈哈,你说的没错,这样搞会出现这个问题? 但你想想有没有解决办法 呢?
你:我擦,你指的思路呀,大哥。。。我哪知道 下一步怎么走。。。
老王:算了,估计你也想不出来。。。 学过嵌套函数没有?
你:yes,然后呢?
老王:想实现一开始你写的america = login(america)不触发你函数的执行,只需要在这个login里面再定义一层函数,第一次调用america = login(america)只调用到外层login,这个login虽然会执行,但不会触发认证了,因为认证的所有代码被封装在login里层的新定义 的函数里了,login只返回 里层函数的函数名,这样下次再执行america()时, 就会调用里层函数啦。。。
你:。。。。。。什么? 什么个意思,我蒙逼了。。。
老王:还是给你看代码吧。。
def login(func): #把要执行的模块从这里传进来 def inner():#再定义一层函数 _username = "alex" #假装这是DB里存的用户信息 _password = "abc!23" #假装这是DB里存的用户信息 global user_status if user_status == False: username = input("user:") password = input("pasword:") if username == _username and password == _password: print("welcome login....") user_status = True else: print("wrong username or password!") if user_status == True: func() # 看这里看这里,只要验证通过了,就调用相应功能 return inner #用户调用login时,只会返回inner的内存地址,下次再调用时加上()才会执行inner函数
此时你仔细着了老王写的代码 ,感觉老王真不是一般人呀,连这种奇淫巧技都能想出来。。。,心中默默感谢上天赐你一个大牛邻居。
你: 老王呀,你这个姿势很nb呀,你独创的?
此时你媳妇噗嗤的笑出声来,你也不知道 她笑个球。。。
老王:呵呵, 这不是我独创的呀当然 ,这是开发中一个常用的玩法,叫语法糖,官方名称“装饰器”,其实上面的写法,还可以更简单
可以把下面代码去掉
america = login(america) #你在这里相当于把america这个函数替换了
只在你要装饰的函数上面加上下面代码
@login def america(): #login() #执行前加上验证 print("----欧美专区----") def japan(): print("----日韩专区----") @login def henan(): #login() #执行前加上验证 print("----河南专区----")
效果是一样的。
你开心的玩着老王教你的新姿势 ,玩着玩着就手贱给你的“河南专区”版块 加了个参数,然后,结果 出错了。。。
你:老王,老王,怎么传个参数就不行了呢?
老王:那必然呀,你调用henan时,其实是相当于调用的login,你的henan第一次调用时henan = login(henan), login就返回了inner的内存地址,第2次用户自己调用henan("3p"),实际上相当于调用的时inner,但你的inner定义时并没有设置参数,但你给他传了个参数,所以自然就报错了呀
你:但是我的 版块需要传参数呀,你不让我传不行呀。。。
老王:没说不让你传,稍做改动便可。。
老王:你再试试就好了 。
你: 果然好使,大神就是大神呀。 。。 不过,如果有多个参数呢?
老王:。。。。老弟,你不要什么都让我教你吧,非固定参数你没学过么? *args,**kwargs...
你:噢 。。。还能这么搞?,nb,我再试试。
你身陷这种新玩法中无法自拔,竟没注意到老王已经离开,你媳妇告诉你说为了不打扰你加班,今晚带孩子去跟她姐妹住 ,你觉得媳妇真体贴,最终,你终于搞定了所有需求,完全遵循开放-封闭原则,最终代码如下 。
#_*_coding:utf-8_*_ user_status = False #用户登录了就把这个改成True def login(func): #把要执行的模块从这里传进来 def inner(*args,**kwargs):#再定义一层函数 _username = "alex" #假装这是DB里存的用户信息 _password = "abc!23" #假装这是DB里存的用户信息 global user_status if user_status == False: username = input("user:") password = input("pasword:") if username == _username and password == _password: print("welcome login....") user_status = True else: print("wrong username or password!") if user_status == True: func(*args,**kwargs) # 看这里看这里,只要验证通过了,就调用相应功能 return inner #用户调用login时,只会返回inner的内存地址,下次再调用时加上()才会执行inner函数 def home(): print("---首页----") @login def america(): #login() #执行前加上验证 print("----欧美专区----") def japan(): print("----日韩专区----") # @login def henan(style): ''' :param style: 喜欢看什么类型的,就传进来 :return: ''' #login() #执行前加上验证 print("----河南专区----") home() # america = login(america) #你在这里相当于把america这个函数替换了 henan = login(henan) # #那用户调用时依然写 america() henan("3p")
此时,你已累的不行了,洗洗就抓紧睡了,半夜,上厕所,隐隐听到隔壁老王家有微弱的女人的声音传来,你会心一笑,老王这家伙,不声不响找了女朋友也不带给我看看,改天一定要见下真人。。。。
第二2天早上,产品经理又提了新的需求,要允许用户选择用qq\weibo\weixin认证,此时的你,已深谙装饰器各种装逼技巧,轻松的就实现了新的需求。
#_*_coding:utf-8_*_ user_status = False #用户登录了就把这个改成True def login(auth_type): #把要执行的模块从这里传进来 def auth(func): def inner(*args,**kwargs):#再定义一层函数 if auth_type == "qq": _username = "alex" #假装这是DB里存的用户信息 _password = "abc!23" #假装这是DB里存的用户信息 global user_status if user_status == False: username = input("user:") password = input("pasword:") if username == _username and password == _password: print("welcome login....") user_status = True else: print("wrong username or password!") if user_status == True: return func(*args,**kwargs) # 看这里看这里,只要验证通过了,就调用相应功能 else: print("only support qq ") return inner #用户调用login时,只会返回inner的内存地址,下次再调用时加上()才会执行inner函数 return auth def home(): print("---首页----") @login('qq') def america(): #login() #执行前加上验证 print("----欧美专区----") def japan(): print("----日韩专区----") @login('weibo') def henan(style): ''' :param style: 喜欢看什么类型的,就传进来 :return: ''' #login() #执行前加上验证 print("----河南专区----") home() # america = login(america) #你在这里相当于把america这个函数替换了 #henan = login(henan) # #那用户调用时依然写 america() # henan("3p")
3.Json & pickle 数据序列化
参考 https://www.cnblogs.com/jokerbj/p/9306287.html
迭代器生成器 https://www.cnblogs.com/jokerbj/p/7282583.html
闭包,命名空间,作用域 https://www.cnblogs.com/jokerbj/p/7242550.html
装饰器 https://www.cnblogs.com/jokerbj/p/7247901.html
4.软件目录结构规范
为什么要设计好目录结构?
"设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题。对于这种风格上的规范,一直都存在两种态度:
- 一类同学认为,这种个人风格问题"无关紧要"。理由是能让程序work就好,风格问题根本不是问题。
- 另一类同学认为,规范化能更好的控制程序结构,让程序具有更高的可读性。
我是比较偏向于后者的,因为我是前一类同学思想行为下的直接受害者。我曾经维护过一个非常不好读的项目,其实现的逻辑并不复杂,但是却耗费了我非常长的时间去理解它想表达的意思。从此我个人对于提高项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,我们设计一个层次清晰的目录结构,就是为了达到以下两点:
- 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。
- 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增加,项目结构不会混乱,仍然能够组织良好。
所以,我认为,保持一个层次清晰的目录结构是有必要的。更何况组织一个良好的工程目录,其实是一件很简单的事儿。
目录组织方式
关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。
这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。
假设你的项目名为soft, 我比较建议的最方便快捷目录结构这样就足够了:
Soft/
|-- bin/
| |-- __init__.py
| |-- start.py
|
|-- conf/
| |-- __init__.py
| |-- conf.ini
| |-- conf.py
| |-- settings.py
|
|-- core/
| |-- tests/
| | |-- __init__.py
| | |-- test_main.py
| |
| |-- __init__.py
| |-- main.py
|
|-- db/
| |-- __init__py
| |-- db.json
|
|-- log/
| |-- access.log
| |-- db.log
|
|-- lib/
| |-- common.py
|
|-- setup.py
|-- requirements.txt
|-- README
简要解释一下:
bin/
: 程序开始的地方,不要超过五十行,调用的地方。- conf/: 配置文件,代码结构,输出要求。
core/
: 存放项目的所有源代码。被调用的地方。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/
存放单元测试代码; (3) 程序的入口最好命名为main.py
。db/:数据存储,人物信息,留数据处理接口增删改查。
- log/: 日志记录地方。
- lib/: 公共模块,方法。
setup.py
: 安装、部署、打包的脚本。requirements.txt
: 存放软件依赖的外部Python包列表。README
: 项目说明文件。
除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt
,ChangeLog.txt
文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章。
下面,再简单讲一下我对这些目录的理解和个人要求吧。
关于README的内容
这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。
它需要说明以下几个事项:
- 软件定位,软件的基本功能。
- 运行代码的方法: 安装环境、启动命令等。
- 简要的使用说明。
- 代码目录结构说明,更详细点可以说明软件的基本原理。
- 常见问题说明。
我觉得有以上几点是比较好的一个README
。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。
可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。
关于requirements.txt和setup.py
setup.py
一般来说,用setup.py
来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。
这个我是踩过坑的。
我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:
- 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
- Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
- 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
- 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。
setup.py
可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。
setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py
当然,简单点自己写个安装脚本(deploy.sh
)替代setup.py
也未尝不可。
requirements.txt
这个文件存在的目的是:
- 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在
setup.py
安装依赖时漏掉软件包。 - 方便读者明确项目使用了哪些Python包。
这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10
这种格式,要求是这个格式能被pip
识别,这样就可以简单的通过 pip install -r requirements.txt
来把所有Python包依赖都装好了。具体格式说明: 点这里。
关于配置文件的使用方法
注意,在上面的目录结构中,没有将conf.py/settings.py
放在源码目录core/下,而是放在conf/
目录下。
很多项目对配置文件的使用做法是:
- 配置文件写在一个或多个python文件中,比如此处的conf.py。
- 项目中哪个模块用到这个配置文件就直接通过
import conf
这种形式来在代码中使用配置。
这种做法我不太赞同:
- 这让单元测试变得困难(因为模块内部依赖了外部配置)
- 另一方面配置文件作为用户控制程序的接口,应当可以由用户自由指定该文件的路径。
- 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖
conf.py
这个文件。
所以,我认为配置的使用,更好的方式是,
- 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
- 程序的配置也是可以灵活控制的。
能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。
所以,不应当在代码中直接import conf
来使用配置文件。上面目录结构中的conf.py
,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py
启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py
你可以换个类似的名字,比如settings.py
。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml
之类的。
5.本节作业
作业需求:
模拟实现一个ATM + 购物商城程序
- 额度 15000或自定义
- 实现购物商城,买东西加入 购物车,调用信用卡接口结账
- 可以提现,手续费5%
- 每月22号出账单,每月10号为还款日,过期未还,按欠款总额 万分之5 每日计息
- 支持多账户登录
- 支持账户间转账
- 记录每月日常消费流水
- 提供还款接口
- ATM记录操作日志
- 提供管理接口,包括添加账户、用户额度,冻结账户等。。。
- 用户认证用装饰器
示例代码 https://github.com/triaquae/py3_training/tree/master/atm
简易流程图:https://www.processon.com/view/link/589eb841e4b0999184934329