爬虫框架:scrapy

一介绍

Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速、简单、可扩展的方式从网站中提取所需的数据。但目前Scrapy的用途十分广泛,可用于如数据挖掘、监测和自动化测试等领域,也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。

Scrapy 是基于twisted框架开发而来,twisted是一个流行的事件驱动的python网络框架。因此Scrapy使用了一种非阻塞(又名异步)的代码来实现并发。整体架构大致如下

1. 引擎(EGINE)

   引擎负责控制系统所有组件之间的数据流,并在某些动作发生时触发事件。有关详细信息,请参见上面的数据流部分。

2. 调度器(SCHEDULER)
   用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL的优先级队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址

3. 下载器(DOWLOADER)
    用于下载网页内容, 并将网页内容返回给EGINE,下载器是建立在twisted这个高效的异步模型上的

4. 爬虫(SPIDERS)
    SPIDERS是开发人员自定义的类,用来解析responses,并且提取items,或者发送新的请求

5. 项目管道(ITEM PIPLINES)
   在items被提取后负责处理它们,主要包括清理、验证、持久化(比如存到数据库)等操作

6. 下载器中间件(Downloader Middlewares)
   位于Scrapy引擎和下载器之间,主要用来处理从EGINE传到DOWLOADER的请求request,已经从DOWNLOADER传到EGINE的响应response

7. 爬虫中间件(Spider Middlewares)  

 位于EGINE和SPIDERS之间,主要工作是处理SPIDERS的输入(即responses)和输出(即requests)

 官网链接:https://docs.scrapy.org/en/latest/topics/architecture.html

二安装

#Windows平台
    1、pip3 install wheel #安装后,便支持通过wheel文件安装软件,wheel文件官网:https://www.lfd.uci.edu/~gohlke/pythonlibs
    3、pip3 install lxml
    4、pip3 install pyopenssl
    5、下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/pywin32/
    6、下载twisted的wheel文件:http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
    7、执行pip3 install 下载目录\Twisted-17.9.0-cp36-cp36m-win_amd64.whl
    8、pip3 install scrapy
  
#Linux平台
    1、pip3 install scrapy

#Mac平台
    2、python3.5 pip -m install scrapy

三命令行工具

#1 查看帮助
    scrapy -h
    scrapy <command> -h

#2 有两种命令:其中Project-only必须切到项目文件夹下才能执行,而Global的命令则不需要
    Global commands:
        startproject #创建项目
        genspider    #创建爬虫程序
        settings     #如果是在项目目录下,则得到的是该项目的配置
        runspider    #运行一个独立的python文件,不必创建项目
        shell        #scrapy shell url地址  在交互式调试,如选择器规则正确与否
        fetch        #独立于程单纯地爬取一个页面,可以拿到请求头
        view         #下载完毕后直接弹出浏览器,以此可以分辨出哪些数据是ajax请求
        version      #scrapy version 查看scrapy的版本,scrapy version -v查看scrapy依赖库的版本
    Project-only commands:
        crawl        #运行爬虫,必须创建项目才行,确保配置文件中ROBOTSTXT_OBEY = False
        check        #检测项目中有无语法错误
        list         #列出项目中所包含的爬虫名
        edit         #编辑器,一般不用
        parse        #scrapy parse url地址 --callback 回调函数  #以此可以验证我们的回调函数是否正确
        bench        #scrapy bentch压力测试

#3 官网链接
    https://docs.scrapy.org/en/latest/topics/commands.html
#1、执行全局命令:请确保不在某个项目的目录下,排除受该项目配置的影响
scrapy startproject MyProject      # 会在当前目录下产生一个Amzon目录,和一个scrapy.cfg(部署项目)配置文件,在Amzon目录下边有个spiders目录(自己写的一些爬虫程序),还有items,中间键,pipelines,settings(爬取程序用到的项目配置)

cd MyProject # 进入项目
scrapy genspider baidu www.baidu.com  # 爬虫程序,amazon名字非常关键,爬虫标识,在 spiders目录下就会有个amazn.py,爬虫文件

scrapy settings --get XXX # 如果切换到项目目录下,看到的则是该项目的配置  xxx(ROBOTSIXT_OBEY ),可以拿到配置内容 这是爬虫协议

# 进入爬虫程序文件下spiders
scrapy runspider baidu.py  #  不依赖于scrapy配置,只运行这个py文件,会显示log加载项等

scrapy shell https://www.baidu.com  # 驱动浏览器朝地址发送个请求,拿到response
    response
    response.status  # 状态码
    response.body
    view(response) # 打开页面
    
scrapy view https://www.taobao.com #如果页面显示内容不全,不全的内容则是ajax请求实现的,以此快速定位问题

scrapy fetch --nolog --headers https://www.taobao.com # 网页的请求头,响应头

scrapy version #scrapy的版本

scrapy version -v #依赖库的版本


#2、执行项目命令:切到项目目录下
scrapy crawl baidu  # 执行爬虫程序,跟 runsipder一样
scrapy check  # 检查sipders里面爬虫文件有没有错误,比如语法错误
scrapy list  # sipders里面有多个爬虫
scrapy parse http://quotes.toscrape.com/ --callback parse  # 拿到response执行parse函数,请求数据,解析数据
scrapy bench #  压力测试
示范用法

四项目结构以及爬虫应用简介 

project_name/     项目名字
   scrapy.cfg     项目配置文件
   project_name/
       __init__.py
       items.py    结构化数据
       pipelines.py  数据处理,持久化
       settings.py   配置文件,包含中间键,并发,等
       spiders/    爬虫文件目录
           __init__.py
           爬虫1.py
           爬虫2.py
           爬虫3.py

文件说明:

  • scrapy.cfg  项目的主配置信息,用来部署scrapy时使用,爬虫相关的配置信息在settings.py文件中。
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等。强调:配置文件的选项必须大写否则视为无效,正确写法USER_AGENT='xxxx'
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:一般创建爬虫文件时,以网站域名命名

import scrapy
 
class XiaoHuarSpider(scrapy.spiders.Spider):
    name = "xiaohuar"                            # 爬虫名称 *****
    allowed_domains = ["xiaohuar.com"]  # 允许的域名
    start_urls = [
        "http://www.xiaohuar.com/hua/",   # 其实URL
    ]
 
    def parse(self, response):
        # 访问起始URL并获取结果后的回调函数
爬虫1.py
import sys,os
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')
关于windows编码

五 Spiders

#在项目目录下新建:entrypoint.py
from scrapy.cmdline import execute
execute(['scrapy', 'crawl', 'xiaohua'])

强调:配置文件的选项必须是大写,如X='1'

# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule


class BaiduSpider(CrawlSpider):
    name = 'xiaohua'
    allowed_domains = ['www.xiaohuar.com']
    start_urls = ['http://www.xiaohuar.com/v/']
    # download_delay = 1

    rules = (
        Rule(LinkExtractor(allow=r'p\-\d\-\d+\.html$'), callback='parse_item',follow=True,),
    )


    def parse_item(self, response):

        if url:
            print('======下载视频==============================', url)
            yield scrapy.Request(url,callback=self.save)



    def save(self,response):
        print('======保存视频==============================',response.url,len(response.body))

        import time
        import hashlib
        m=hashlib.md5()
        m.update(str(time.time()).encode('utf-8'))
        m.update(response.url.encode('utf-8'))

        filename=r'E:\\mv\\%s.mp4' %m.hexdigest()
        with open(filename,'wb') as f:
            f.write(response.body)
模版:CrawlSpider

https://docs.scrapy.org/en/latest/topics/spiders.html

六 Selectors

#1 //与/
#2 text
#3、extract与extract_first:从selector对象中解出内容
#4、属性:xpath的属性加前缀@
#4、嵌套查找
#5、设置默认值
#4、按照属性查找
#5、按照属性模糊查找
#6、正则表达式
#7、xpath相对路径
#8、带变量的xpath
response.selector.css()
response.selector.xpath()
可简写为
response.css()
response.xpath()

#1 //与/
response.xpath('//body/a/')#
response.css('div a::text')

>>> response.xpath('//body/a') #开头的//代表从整篇文档中寻找,body之后的/代表body的儿子
[]
>>> response.xpath('//body//a') #开头的//代表从整篇文档中寻找,body之后的//代表body的子子孙孙
[<Selector xpath='//body//a' data='<a href="image1.html">Name: My image 1 <'>, <Selector xpath='//body//a' data='<a href="image2.html">Name: My image 2 <'>, <Selector xpath='//body//a' data='<a href="
image3.html">Name: My image 3 <'>, <Selector xpath='//body//a' data='<a href="image4.html">Name: My image 4 <'>, <Selector xpath='//body//a' data='<a href="image5.html">Name: My image 5 <'>]

#2 text
>>> response.xpath('//body//a/text()')
>>> response.css('body a::text')

#3、extract与extract_first:从selector对象中解出内容
>>> response.xpath('//div/a/text()').extract()
['Name: My image 1 ', 'Name: My image 2 ', 'Name: My image 3 ', 'Name: My image 4 ', 'Name: My image 5 ']
>>> response.css('div a::text').extract()
['Name: My image 1 ', 'Name: My image 2 ', 'Name: My image 3 ', 'Name: My image 4 ', 'Name: My image 5 ']

>>> response.xpath('//div/a/text()').extract_first()
'Name: My image 1 '
>>> response.css('div a::text').extract_first()
'Name: My image 1 '

#4、属性:xpath的属性加前缀@
>>> response.xpath('//div/a/@href').extract_first()
'image1.html'
>>> response.css('div a::attr(href)').extract_first()
'image1.html'

#4、嵌套查找
>>> response.xpath('//div').css('a').xpath('@href').extract_first()
'image1.html'

#5、设置默认值
>>> response.xpath('//div[@id="xxx"]').extract_first(default="not found")
'not found'

#4、按照属性查找
response.xpath('//div[@id="images"]/a[@href="image3.html"]/text()').extract()
response.css('#images a[@href="image3.html"]/text()').extract()

#5、按照属性模糊查找
response.xpath('//a[contains(@href,"image")]/@href').extract()
response.css('a[href*="image"]::attr(href)').extract()

response.xpath('//a[contains(@href,"image")]/img/@src').extract()
response.css('a[href*="imag"] img::attr(src)').extract()

response.xpath('//*[@href="image1.html"]')
response.css('*[href="image1.html"]')

#6、正则表达式
response.xpath('//a/text()').re(r'Name: (.*)')
response.xpath('//a/text()').re_first(r'Name: (.*)')

#7、xpath相对路径
>>> res=response.xpath('//a[contains(@href,"3")]')[0]
>>> res.xpath('img')
[<Selector xpath='img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('./img')
[<Selector xpath='./img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('.//img')
[<Selector xpath='.//img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('//img') #这就是从头开始扫描
[<Selector xpath='//img' data='<img src="image1_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image2_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image3_thumb.jpg">'>, <Selector xpa
th='//img' data='<img src="image4_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image5_thumb.jpg">'>]

#8、带变量的xpath
>>> response.xpath('//div[@id=$xxx]/a/text()',xxx='images').extract_first()
'Name: My image 1 '
>>> response.xpath('//div[count(a)=$yyy]/@id',yyy=5).extract_first() #求有5个a标签的div的id
'images'
View Code
<html>
 <head>
  <base href='http://example.com/' />
  <title>Example website</title>
 </head>
 <body>
  <div id='images'>
   <a href='image1.html'>Name: My image 1 <br /><img src='image1_thumb.jpg' /></a>
   <a href='image2.html'>Name: My image 2 <br /><img src='image2_thumb.jpg' /></a>
   <a href='image3.html'>Name: My image 3 <br /><img src='image3_thumb.jpg' /></a>
   <a href='image4.html'>Name: My image 4 <br /><img src='image4_thumb.jpg' /></a>
   <a href='image5.html'>Name: My image 5 <br /><img src='image5_thumb.jpg' /></a>
  </div>
 </body>
</html>
待查找html

https://docs.scrapy.org/en/latest/topics/selectors.html

七 Items

https://docs.scrapy.org/en/latest/topics/items.html

八 Item Pipelid

https://docs.scrapy.org/en/latest/topics/item-pipeline.html

九 Dowloader Middeware

https://docs.scrapy.org/en/latest/topics/downloader-middleware.html 

十 Spider Middleware

https://docs.scrapy.org/en/latest/topics/spider-middleware.html

十一 爬取亚马逊商品信息

1、
scrapy startproject Amazon
cd Amazon
scrapy genspider spider_goods www.amazon.cn

2、settings.py
ROBOTSTXT_OBEY = False
#请求头
DEFAULT_REQUEST_HEADERS = {
    'Referer':'https://www.amazon.cn/',
    'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.75 Safari/537.36'
}
#打开注释
HTTPCACHE_ENABLED = True
HTTPCACHE_EXPIRATION_SECS = 0
HTTPCACHE_DIR = 'httpcache'
HTTPCACHE_IGNORE_HTTP_CODES = []
HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

3、items.py
class GoodsItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    #商品名字
    goods_name = scrapy.Field()
    #价钱
    goods_price = scrapy.Field()
    #配送方式
    delivery_method=scrapy.Field()

4、spider_goods.py
# -*- coding: utf-8 -*-
import scrapy

from Amazon.items import  GoodsItem
from scrapy.http import Request
from urllib.parse import urlencode

class SpiderGoodsSpider(scrapy.Spider):
    name = 'spider_goods'
    allowed_domains = ['www.amazon.cn']
    # start_urls = ['http://www.amazon.cn/']


    def __int__(self,keyword=None,*args,**kwargs):
        super(SpiderGoodsSpider).__init__(*args,**kwargs)
        self.keyword=keyword

    def start_requests(self):
        url='https://www.amazon.cn/s/ref=nb_sb_noss_1?'
        paramas={
            '__mk_zh_CN': '亚马逊网站',
            'url': 'search - alias = aps',
            'field-keywords': self.keyword
        }
        url=url+urlencode(paramas,encoding='utf-8')
        yield Request(url,callback=self.parse_index)


    def parse_index(self, response):
        print('解析索引页:%s' %response.url)

        urls=response.xpath('//*[contains(@id,"result_")]/div/div[3]/div[1]/a/@href').extract()
        for url in urls:
            yield Request(url,callback=self.parse_detail)

        next_url=response.urljoin(response.xpath('//*[@id="pagnNextLink"]/@href').extract_first())
        print('下一页的url',next_url)
        yield Request(next_url,callback=self.parse_index)

    def parse_detail(self,response):
        print('解析详情页:%s' %(response.url))

        item=GoodsItem()
        # 商品名字
        item['goods_name'] = response.xpath('//*[@id="productTitle"]/text()').extract_first().strip()
        # 价钱
        item['goods_price'] = response.xpath('//*[@id="priceblock_ourprice"]/text()').extract_first().strip()
        # 配送方式
        item['delivery_method'] = ''.join(response.xpath('//*[@id="ddmMerchantMessage"]//text()').extract())
        return item

5、自定义pipelines
#sql.py
import pymysql
import settings


MYSQL_HOST=settings.MYSQL_HOST
MYSQL_PORT=settings.MYSQL_PORT
MYSQL_USER=settings.MYSQL_USER
MYSQL_PWD=settings.MYSQL_PWD
MYSQL_DB=settings.MYSQL_DB

conn=pymysql.connect(
    host=MYSQL_HOST,
    port=int(MYSQL_PORT),
    user=MYSQL_USER,
    password=MYSQL_PWD,
    db=MYSQL_DB,
    charset='utf8'
)
cursor=conn.cursor()

class Mysql(object):
    @staticmethod
    def insert_tables_goods(goods_name,goods_price,deliver_mode):
        sql='insert into goods(goods_name,goods_price,delivery_method) values(%s,%s,%s)'
        cursor.execute(sql,args=(goods_name,goods_price,deliver_mode))
        conn.commit()

    @staticmethod
    def is_repeat(goods_name):
        sql='select count(1) from goods where goods_name=%s'
        cursor.execute(sql,args=(goods_name,))
        if cursor.fetchone()[0] >= 1:
            return True

if __name__ == '__main__':
    cursor.execute('select * from goods;')
    print(cursor.fetchall())


#pipelines.py
from Amazon.mysqlpipelines.sql import Mysql


class AmazonPipeline(object):
    def process_item(self, item, spider):
        goods_name=item['goods_name']
        goods_price=item['goods_price']
        delivery_mode=item['delivery_method']
        if not Mysql.is_repeat(goods_name):
            Mysql.insert_table_goods(goods_name,goods_price,delivery_mode)



6、创建数据库表
create database amazon charset utf8;
create table goods(
    id int primary key auto_increment,
    goods_name char(30),
    goods_price char(20),
    delivery_method varchar(50)
);

7、settings.py
MYSQL_HOST='localhost'
MYSQL_PORT='3306'
MYSQL_USER='root'
MYSQL_PWD='123'
MYSQL_DB='amazon'


#数字代表优先级程度(1-1000随意设置,数值越低,组件的优先级越高)
ITEM_PIPELINES = {
   'Amazon.mysqlpipelines.pipelines.mazonPipeline': 1,
}


#8、在项目目录下新建:entrypoint.py
from scrapy.cmdline import execute
execute(['scrapy', 'crawl', 'spider_goods','-a','keyword=iphone8'])
View Code

 

posted @ 2018-01-17 19:14  liqianlong  阅读(226)  评论(0编辑  收藏  举报