pytorch-卷积层

 

二维卷积层计算

image

  • 输入 X : nhnw
  • 卷积核 W : khkw
  • 偏差 bR
  • 输出 Y : (nhkh+1)(nwkw+1)
    Y=XW+b
  • W和b是可学习的参数
    image
    image

图像卷积

互相关运算

image
⼆维互相关运算。阴影部分是第⼀个输出元素,以及⽤于计算输出的输⼊张量元素和核张量元素:0×0+1×1+3×2+4×3=19.
在二维互相关运算中,卷积窗口从输入张量的左上角开始,从左到右、从上到下滑动。当卷积窗口滑动到新一个位置时,包含在该窗口中的部分张量与卷积核张量进行按元素相乘,得到的张量再求和得到一个单一的标量值,由此我们得出了这一位置的输出张量值。在如上例子中,输出张量的四个元素由⼆维互相关运算得到,这个输出高度为2、宽度为2,如下所示:

0×0+1×1+3×2+4×3=19,

1×0+2×1+4×2+5×3=25,

3×0+4×1+6×2+7×3=37,

4×0+5×1+7×2+8×3=43

注意,输出大小略小于输入大小。这是因为卷积核的宽度和高度大于1,而卷积核只与图像中每个大小完全适合的位置进行互相关运算。所以,输出大小等于输入大小nh×nw减去卷积核大小kh×kw,即:

(nhkh+1)×(nwkw+1).

这是因为我们需要足够的空间在图像上"移动"卷积核。稍后,我们将看到如何通过在图像边界周围填充零来保证有足够的空间移动卷积核,从而保持输出大小不变。接下来,我们在corr2d函数中实现如上过程,该函数接受输入张量X和卷积核张量K,并返回输出张量Y。

import torch
from torch import nn
from d2l import torch as d2l
def corr2d(X, K):  
    """计算二维互相关运算。"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

输入张量X和卷积核张量K,我们来验证上述⼆维互相关运算的输出。

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

输出

tensor([[19., 25.],
        [37., 43.]])

image

卷积层

卷积层对输入和卷积核权重进行互相关运算,并在添加标量偏置之后产生输出。所以,卷积层中的两个被训练的参数是卷积核权重和标量偏置。就像我们之前随机初始化全连接层⼀样,在训练基于卷积层的模型时,我们也随机初始化卷积核权重。基于上面定义的corr2d函数实现⼆维卷积层。在__init__构造函数中,将weight和bias声明为两个模型参数。前向传播函数调用corr2d函数并添加偏置。

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(kernel_size))
        self.bias = nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

其中torch.nn.Parameter是继承自torch.Tensor的子类,其主要作用是作为nn.Module中的可训练参数使用。它与torch.Tensor的区别就是nn.Parameter会自动被认为是module的可训练参数,即加入到parameter()这个迭代器中去;而module中非nn.Parameter()的普通tensor是不在parameter中的。
用法:
torch.nn.parameter.Parameter(data=None, requires_grad=True)

torch.nn.Parameter(data=None, requires_grad=True)
requires_grad默认值为True,表示可训练,False表示不可训练。

图像中目标的边缘检测

如下是卷积层的⼀个简单应用:通过找到像素变化的位置,来检测图像中不同颜色的边缘。首先,我们构造⼀个6 × 8像素的黑白图像。中间四列为黑色(0),其余像素为白色(1)。

X = torch.ones((6, 8))
X[:, 2:6] = 0
X

image
接下来,我们构造⼀个高度为1、宽度为2的卷积核K。当进行互相关运算时,如果水平相邻的两元素相同,则输出为零,否则输出为非零。

K = torch.tensor([[1.0, -1.0]])

现在,我们对参数X(输入)和K(卷积核)执行互相关运算。如下所示,输出Y中的1代表从白色到黑色的边缘,-1代表从黑色到白色的边缘,其他情况的输出为0。

Y = corr2d(X, K)
Y

image
现在我们将输入的⼆维图像转置,再进行如上的互相关运算。其输出如下,之前检测到的垂直边缘消失了。不出所料,这个卷积核K只可以检测垂直边缘,无法检测水平边缘。

corr2d(X.t(), K)

image

学习卷积核

如果我们只需寻找黑白边缘,那么以上[1, -1]的边缘检测器足以。然而,当有了更复杂数值的卷积核,或者连续的卷积层时,我们不可能手动设计滤波器。那么我们是否可以学习由X生成Y的卷积核呢?
现在让我们看看是否可以通过仅查看“输入-输出”对来学习由X生成Y的卷积核。我们先构造一个卷积层,并将其卷积核初始化为随机张量。接下来,在每次迭代中,我们比较Y与卷积层输出的平方误差,然后计算梯度来更新卷积核。为了简单起见,我们在此使用内置的⼆维卷积层,并忽略偏置。

# 构造⼀个⼆维卷积层,它具有1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)
# 这个⼆维卷积层使⽤四维输⼊和输出格式(批量⼤⼩、通道、⾼度、宽度),
# 其中批量⼤⼩和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2 # 学习率
for i in range(20):
    Y_hat = conv2d(X)
    l = (Y_hat - Y) ** 2
    conv2d.zero_grad()
    l.sum().backward()
    # 迭代卷积核conv2d.weight.grad是梯度
    conv2d.weight.data[:] -= lr * conv2d.weight.grad
    if (i + 1) % 2 == 0:
        print(f'epoch {i+1}, loss {l.sum():.3f}')

image
在20次迭代之后,误差已经降到足够低。现在我们来看看我们所学的卷积核的权重张量。

conv2d.weight.data.reshape((1, 2))

# tensor([[ 0.9972, -1.0026]])
posted @   lipu123  阅读(70)  评论(0编辑  收藏  举报
(评论功能已被禁用)
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
点击右上角即可分享
微信分享提示