TensorFlow11.3 循环神经网络RNN-情感分类实战

这个就是好评和差评的一个分类。
这个输入一般\(h_0\)全为0.
image
要想实现这个结构有两种方案:
SimpleRNNCell(这个更接近原理)

  • single layer
  • multi-layers

RNNCell(这个方便使用)

1.加载数据

(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=1000)#
参数(num_words=10000)将数据限定为前10000个最常出现的单词,如果数据集中存在大于10000的单词,则令其为2。
要证明演示num_words=10000的作用,我找到了train_data中第1125条数据的第200个单词的单词编号为10003
print(train_data[1225][195:205])
输出1:[190, 2636, 8, 268, 1648, 10003, 3027, 24, 4, 294]
输出2:[190, 2636, 8, 268, 1648, 2, 3027, 24, 4, 294]

keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
这个函数就是把你个句子长度限制到80,如果小于80这补充0,大于这截断。

db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)
这里的drop_remainder=True的话就是最后那个不足128的batch就丢弃掉

import  os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

import  tensorflow as tf
import  numpy as np
from    tensorflow import keras
from    tensorflow.keras import layers


tf.random.set_seed(22)
np.random.seed(22) 
assert tf.__version__.startswith('2.')

batchsz = 128

# the most frequest words
total_words = 10000
max_review_len = 80
embedding_len = 100
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)#
# x_train:[b, 80]
# x_test: [b, 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len) #这里就是强行将句子变成80长度,小于80的补0,大于的截取
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)

db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)#就是最后那个不足128的batch就丢弃掉
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)

image
我们发现这个地方y=1的时候是好评,y=0的时候是差评。

2 单层RNN-cell的建立

tf.keras.layers.SimpleRNN(
units,#正整数,输出空间的维数
activation='tanh',#激活函数
use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,# dropout层的比例
recurrent_dropout=0.0,
return_sequences=False,#布尔值。是否返回输出序列中的最后一个输出或完整序列。默认值:False.
return_state=False,
go_backwards=False,
stateful=False,
unroll=False,#布尔值(默认 False)。如果为 True,则网络将展开,否则将使用符号循环。展开可以加速 RNN,尽管它往往更需要内存。展开仅适用于短序列。
**kwargs
)

image
这是官网上的参数

然后还有一个全连接层的:

tf.keras.layers.Dense(
units,#正整数,输出空间的维数
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs
)

image

tf.keras.layers.Embedding(
input_dim,
output_dim,
embeddings_initializer='uniform',
embeddings_regularizer=None,
activity_regularizer=None,
embeddings_constraint=None,
mask_zero=False,
input_length=None,
sparse=False,
**kwargs
)

image

class MyRNN(keras.Model):

    def __init__(self, units):
        super(MyRNN, self).__init__()


        # transform text to embedding representation
        # [b, 80] => [b, 80, 100]
        self.embedding = layers.Embedding(total_words, embedding_len,
                                          input_length=max_review_len)

        # [b, 80, 100] , h_dim: 64
        self.rnn = keras.Sequential([
            layers.SimpleRNN(units, dropout=0.5, return_sequences=True, unroll=True),
            layers.SimpleRNN(units, dropout=0.5, unroll=True)
        ])


        # fc, [b, 80, 100] => [b, 64] => [b, 1]
        self.outlayer = layers.Dense(1)# 全连接层

    def call(self, inputs, training=None):
        """
        net(x) net(x, training=True) :train mode
        net(x, training=False): test
        :param inputs: [b, 80]
        :param training:
        :return:
        """
        # [b, 80]
        x = inputs
        # embedding: [b, 80] => [b, 80, 100]
        x = self.embedding(x)
        # rnn cell compute
        # x: [b, 80, 100] => [b, 64]
        x = self.rnn(x,training=training)

        # out: [b, 64] => [b, 1]
        x = self.outlayer(x)
        # p(y is pos|x)
        prob = tf.sigmoid(x)

        return prob

def main():
    units = 64
    epochs = 4

    model = MyRNN(units)
    # model.build(input_shape=(4,80))
    # model.summary()
    model.compile(optimizer = keras.optimizers.Adam(0.001),
                  loss = tf.losses.BinaryCrossentropy(),
                  metrics=['accuracy'])
    model.fit(db_train, epochs=epochs, validation_data=db_test)

    model.evaluate(db_test)


if __name__ == '__main__':
    main()

posted @ 2023-06-25 20:45  lipu123  阅读(84)  评论(0编辑  收藏  举报