4.3 线性回归的改进-岭回归

1.带有L2正则化的线性回归-岭回归

岭回归,其实也是一种线性回归。只不过在算法建立回归方程时候,加上正则化的限制,从而达到解决过拟合的效果

2.API

sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver="auto", normalize=False)
  具有l2正则化的线性回归
  alpha:正则化力度,也叫 λ
     λ取值:0~1 1~10
  fit_intercept是否添加偏置(建议添加)
  solver:会根据数据自动选择优化方法
     sag:如果数据集、特征都比较大,选择该随机梯度下降优化
  normalize:数据是否进行标准化
     normalize=False:可以在fit之前调用preprocessing.StandardScaler标准化数据
  Ridge.coef_:回归权重
  Ridge.intercept_:回归偏置

All last four solvers support both dense and sparse data. However,
only 'sag' supports sparse input when fit_intercept is True.

Ridge方法相当于SGDRegressor(penalty='l2', loss="squared_loss"),只不过SGDRegressor实现了一个普通的随机梯度下降学习,推荐使用Ridge(实现了SAG)

sklearn.linear_model.RidgeCV(_BaseRidgeCV, RegressorMixin)

  • 具有l2正则化的线性回归,可以进行交叉验证
  • coef_:回归系数
class _BaseRidgeCV(LinearModel):
    def __init__(self, alphas=(0.1, 1.0, 10.0),
                 fit_intercept=True, normalize=False, scoring=None,
                 cv=None, gcv_mode=None,
                 store_cv_values=False):

观察正则化程度的变化,对结果的影响?
image

  • 正则化力度越大,权重系数会越小
  • 正则化力度越小,权重系数会越大

3.代码

#4)预估器
    estimator=Ridge()
    estimator.fit(x_train,y_train)
    #5)得出模型
    print("岭回归-权重系数为:\n",estimator.coef_)
    print("岭回归-偏置为:\n",estimator.intercept_)
    #6)模型评估
    y_predict=estimator.predict(x_test)
    print("岭回归:\n",y_predict)
    error =mean_squared_error(y_test,y_predict)
    print("岭回归-均方误差:\n",error)

波士顿房价预测

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge
from sklearn.metrics import mean_squared_error
def linear3():
    """
    岭回归的优化方法对波士顿房价进行预测
    :return:
    """
    #1)获取数据
    bosten = load_boston()
    #2)划分数据集
    x_train,x_test,y_train,y_test=train_test_split(bosten.data,bosten.target,random_state=22)
    #3)标准化
    transfer=StandardScaler()
    x_train=transfer.fit_transform(x_train)
    x_test=transfer.transform(x_test)
    #4)预估器
    estimator=Ridge()
    estimator.fit(x_train,y_train)
    #5)得出模型
    print("岭回归-权重系数为:\n",estimator.coef_)
    print("岭回归-偏置为:\n",estimator.intercept_)
    #6)模型评估
    y_predict=estimator.predict(x_test)
    print("岭回归:\n",y_predict)
    error =mean_squared_error(y_test,y_predict)
    print("岭回归-均方误差:\n",error)

    return None

image

posted @ 2023-06-11 20:15  lipu123  阅读(21)  评论(0编辑  收藏  举报