Loading

蓝桥杯 8买不到的数目(数论/线性DP)

问题描述

小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。

小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。

你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。

本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。

输入格式

两个正整数,表示每种包装中糖的颗数(都不多于1000)

输出格式

一个正整数,表示最大不能买到的糖数

样例输入1
4 7
样例输出1
17
样例输入2
3 5
样例输出2
7
解法一:参考NOIP2017 Day1T1小凯的疑惑 直接输出n*m-n-m
https://www.zhihu.com/question/67960447这个解法比较好理解...ex-gcd啥的咱也不知道
解法二:dp枚举,找一个比较大的范围线性递推就行
//#include <bits/stdc++.h>
//using namespace std;
//int main()
//{
//    int n,m;
//    cin>>n>>m; 
//    cout<<n*m-n-m;
//    return 0;
// } 

#include <bits/stdc++.h>
using namespace std;
int dp[1000005]={0};//dp[i]=1表示能分解成n,m倍数和的形式 
int main()
{
    int n,m,i;
    cin>>n>>m;
    dp[n]=1;
    dp[m]=1;
    int mmin=min(n,m);
    for(i=mmin;i<=1000005;i++)
    {
        if(i-n>=0)dp[i]|=dp[i-n];
        if(i-m>=0)dp[i]|=dp[i-m];
    }
    int ans=0;
    for(i=1;i<=1000005;i++)
    {
        if(dp[i]==0)ans=max(ans,i);
    }
    cout<<ans;
    return 0;
 }
 

 

posted @ 2020-03-12 15:59  脂环  阅读(195)  评论(0编辑  收藏  举报