A*寻路算法基于C#实现

    玩过即时战略,RPG等类型的游戏的朋友一定会知道,当我们用鼠标选取某些单位并命令其到达地图上确定的位置时,这些单位总是可以自动的选择最短的路径到达。这个时候我们就会联想到大名鼎鼎的A*寻路算法,下文简略介绍算法实现原理,并附上C#实现方法。

    算法原理请见:http://data.gameres.com/message.asp?TopicID=25439

 

代码
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections;

namespace ConsoleApplication2
{
class Program
{





static void Main(string[] args)
{



test mytest
= new test();

//定义出发位置
Point pa = new Point();
pa.x
= 1;
pa.y
= 1;

//定义目的地
Point pb = new Point();
pb.x
= 8;
pb.y
= 8;

mytest.FindWay(pa, pb);

mytest.PrintMap();
Console.ReadLine();
}
}
class test
{

//数组用1表示可通过,0表示障碍物
byte[,] R = new byte[10, 10] {
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{
1, 1, 1, 1, 0, 1, 1, 1, 1, 1 },
{
1, 1, 1, 1, 0, 1, 1, 1, 1, 1 },
{
1, 1, 1, 1, 0, 1, 1, 1, 1, 1 },
{
1, 1, 1, 1, 0, 1, 1, 1, 1, 1 },
{
1, 1, 1, 1, 0, 1, 1, 1, 1, 1 },
{
1, 1, 1, 1, 0, 1, 1, 1, 1, 1 },
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }

};



//开启列表
List<Point> Open_List = new List<Point>();

//关闭列表
List<Point> Close_List = new List<Point>();

//从开启列表查找F值最小的节点
private Point GetMinFFromOpenList()
{
Point Pmin
= null;
foreach (Point p in Open_List) if (Pmin==null || Pmin.G + Pmin.H > p.G + p.H) Pmin = p;
return Pmin;
}

//判断一个点是否为障碍物
private bool IsBar(Point p, byte[,] map)
{
if (map[p.y, p.x] == 0) return true;
return false;
}

//判断关闭列表是否包含一个坐标的点
private bool IsInCloseList(int x, int y)
{
foreach (Point p in Close_List) if (p.x == x && p.y == y) return true;
return false;
}
//从关闭列表返回对应坐标的点
private Point GetPointFromCloseList(int x, int y)
{
foreach (Point p in Close_List) if (p.x == x && p.y == y) return p;
return null;
}

//判断开启列表是否包含一个坐标的点
private bool IsInOpenList(int x, int y)
{
foreach (Point p in Open_List) if (p.x == x && p.y == y) return true;
return false;
}
//从开启列表返回对应坐标的点
private Point GetPointFromOpenList(int x, int y)
{
foreach (Point p in Open_List) if (p.x == x && p.y == y) return p;
return null;
}


//计算某个点的G值
private int GetG(Point p)
{
if (p.father == null) return 0;
if (p.x == p.father.x || p.y == p.father.y) return p.father.G + 10;
else return p.father.G + 14;
}

//计算某个点的H值
private int GetH(Point p, Point pb)
{
return Math.Abs(p.x - pb.x) + Math.Abs(p.y - pb.y);
}

//检查当前节点附近的节点
private void CheckP8(Point p0, byte[,] map, Point pa, ref Point pb)
{
for (int xt = p0.x - 1; xt <= p0.x + 1; xt++)
{
for (int yt = p0.y - 1; yt <= p0.y + 1; yt++)
{
//排除超过边界和等于自身的点
if ((xt >= 0 && xt < 10 && yt >= 0 && yt < 10) && !(xt == p0.x && yt == p0.y))
{
//排除障碍点和关闭列表中的点
if (map[yt, xt] != 0 && !IsInCloseList(xt, yt))
{
if (IsInOpenList(xt, yt))
{
Point pt
= GetPointFromOpenList(xt, yt);
int G_new = 0;
if (p0.x == pt.x || p0.y == pt.y) G_new = p0.G + 10;
else G_new = p0.G + 14;
if (G_new < pt.G)
{
Open_List.Remove(pt);
pt.father
= p0;
pt.G
= G_new;
Open_List.Add(pt);
}
}
else
{
//不在开启列表中
Point pt = new Point();
pt.x
= xt;
pt.y
= yt;
pt.father
= p0;
pt.G
= GetG(pt);
pt.H
= GetH(pt, pb);
Open_List.Add(pt);
}
}
}
}
}
}



public void FindWay(Point pa, Point pb)
{

Open_List.Add(pa);
while (!(IsInOpenList(pb.x, pb.y) || Open_List.Count == 0))
{
Point p0
= GetMinFFromOpenList();
if (p0 == null) return;
Open_List.Remove(p0);
Close_List.Add(p0);
CheckP8(p0, R, pa,
ref pb);
}


Point p
= GetPointFromOpenList(pb.x, pb.y);
while (p.father != null)
{
p
= p.father;
R[p.y, p.x]
= 3;
}

}

public void SaveWay( Point pb)
{

Point p
= pb;
while (p.father != null)
{
p
= p.father;
R[p.y, p.x]
= 3;
}
}

public void PrintMap()
{




for (int a = 0; a < 10; a++)
{
for (int b = 0; b < 10; b++)
{
if (R[a, b] == 1) Console.Write("");
else if (R[a, b] == 3) Console.Write("");
else if (R[a, b] == 4) Console.Write("");

else Console.Write(" ");
}
Console.Write(
"\n");
}

}


}

class Point
{
public int y;
public int x;
public int G;
public int H;

public Point()
{
}
public Point(int x0, int y0, int G0, int H0, Point F)
{
x
= x0;
y
= y0;
G
= G0;
H
= H0;
father
= F;
}


public Point father;
}


}

 

 

 

posted @ 2010-07-01 19:04  lipan  阅读(10039)  评论(3编辑  收藏  举报