python常用模块(re模块)
一、常用模块
(一)collections模块
在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。
1.namedtuple: 生成可以使用名字来访问元素内容的tuple
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典
1、namedtuple
我们知道tuple
可以表示不变集合,例如,一个点的二维坐标就可以表示成:
p = (1, 2)
但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
这时,namedtuple
就派上了用场:
from collections import namedtuple Point = namedtuple('Point', ['x', 'y']) p = Point(1, 2) print(p.x) # 1 print(p.y) # 2
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple
定义:
#namedtuple('名称', [属性list]): Circle = namedtuple('Circle', ['x', 'y', 'r'])
2、deque
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
from collections import deque q = deque(['a', 'b', 'c']) q.append('x') q.appendleft('y') print(q) # 结果: deque(['y', 'a', 'b', 'c', 'x'])
deque除了实现list的append()
和pop()
外,还支持appendleft()
和popleft()
,这样就可以非常高效地往头部添加或删除元素。
3、OrderedDict
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict
:
from collections import OrderedDict d = dict([('a', 1), ('b', 2), ('c', 3)]) # dict的Key是无序的 print(d) #结果:{'a': 1, 'b': 2, 'c': 3} od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) # OrderedDict的Key是有序的 print(od) #结果:OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict
的Key会按照插入的顺序排列,不是Key本身排序:
from collections import OrderedDict od = OrderedDict() od['z'] = 1 od['y'] = 2 od['x'] = 3 # 按照插入的Key的顺序返回 print(od.keys()) #结果:odict_keys(['z', 'y', 'x'])
4、defaultdict
有如下值集合 [
11
,
22
,
33
,
44
,
55
,
66
,
77
,
88
,
99
,
90.
..],将所有大于
66
的值保存至字典的第一个key中,将小于
66
的值保存至第二个key的值中。
即: {
'k1'
: 大于
66
,
'k2'
: 小于
66
}
values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = {} for value in values: if value>66: if my_dict.has_key('k1'): my_dict['k1'].append(value) else: my_dict['k1'] = [value] else: if my_dict.has_key('k2'): my_dict['k2'].append(value) else: my_dict['k2'] = [value]
from collections import defaultdict values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = defaultdict(list) for value in values: if value>66: my_dict['k1'].append(value) else: my_dict['k2'].append(value)
使用dict
时,如果引用的Key不存在,就会抛出KeyError
。如果希望key不存在时,返回一个默认值,就可以用defaultdict
:
from collections import defaultdict dd = defaultdict(lambda: 'N/A') dd['key1'] = 'abc' # key1存在 print(dd['key1']) #结果:abc # key2不存在,返回默认值 print(dd['key2']) #结果:N/A
5、Counter
from collections import Counter c = Counter('abcdeabcdabcaba') print(c) #结果:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
其他详细内容 http://www.cnblogs.com/Eva-J/articles/7291842.html
(二)时间模块
和时间有关系的我们就要用到时间模块。在使用模块之前,应该首先导入这个模块。
# 常用方法 1.time.sleep(secs) # (线程)推迟指定的时间运行。单位为秒。 2.time.time() # 获取当前时间戳
表示时间的三种方式
在Python中,通常有这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串:
(1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
(2)格式化的时间字符串(Format String): ‘1999-12-06’
%y 两位数的年份表示(00-99) %Y 四位数的年份表示(000-9999) %m 月份(01-12) %d 月内中的一天(0-31) %H 24小时制小时数(0-23) %I 12小时制小时数(01-12) %M 分钟数(00=59) %S 秒(00-59) %a 本地简化星期名称 %A 本地完整星期名称 %b 本地简化的月份名称 %B 本地完整的月份名称 %c 本地相应的日期表示和时间表示 %j 年内的一天(001-366) %p 本地A.M.或P.M.的等价符 %U 一年中的星期数(00-53)星期天为星期的开始 %w 星期(0-6),星期天为星期的开始 %W 一年中的星期数(00-53)星期一为星期的开始 %x 本地相应的日期表示 %X 本地相应的时间表示 %Z 当前时区的名称 %% %号本身
(3)元组(struct_time) :struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)
索引(Index) | 属性(Attribute) | 值(Values) |
---|---|---|
0 | tm_year(年) | 比如2011 |
1 | tm_mon(月) | 1 - 12 |
2 | tm_mday(日) | 1 - 31 |
3 | tm_hour(时) | 0 - 23 |
4 | tm_min(分) | 0 - 59 |
5 | tm_sec(秒) | 0 - 60 |
6 | tm_wday(weekday) | 0 - 6(0表示周一) |
7 | tm_yday(一年中的第几天) | 1 - 366 |
8 | tm_isdst(是否是夏令时) | 默认为0 |
首先,我们先导入time模块,来认识一下python中表示时间的几种格式:
#导入时间模块 import time #时间戳 print(time.time()) #结果:1500875844.800804 #时间字符串 print(time.strftime("%Y-%m-%d %X")) #结果:'2017-07-24 13:54:37' print(time.strftime("%Y-%m-%d %H-%M-%S")) #结果:'2017-07-24 13-55-04' #时间元组:localtime将一个时间戳转换为当前时区的struct_time time.localtime() time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=13, tm_min=59, tm_sec=37, tm_wday=0, tm_yday=205, tm_isdst=0)
小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的
几种格式之间的转换
#时间戳-->结构化时间 #time.gmtime(时间戳) #UTC时间,与英国伦敦当地时间一致 #time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 import time print(time.gmtime(1500000000)) #结果: time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) print(time.localtime(1500000000)) #结果: time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) #结构化时间-->时间戳 #time.mktime(结构化时间) time_tuple = time.localtime(1500000000) print(time.mktime(time_tuple)) #结果:1500000000.0
#结构化时间-->字符串时间 #time.strftime("格式定义","结构化时间") 结构化时间参数若不传,则现实当前时间 import time print(time.strftime("%Y-%m-%d %X")) #结果: '2017-07-24 14:55:36' print(time.strftime("%Y-%m-%d", time.localtime(1500000000))) #结果: '2017-07-14' #字符串时间-->结构化时间 #time.strptime(时间字符串,字符串对应格式) print(time.strptime("2017-03-16","%Y-%m-%d")) #结果: time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1) print(time.strptime("07/24/2017","%m/%d/%Y")) #结果: time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)
import time #结构化时间 --> %a %b %d %H:%M:%S %Y串 #time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串 print(time.asctime(time.localtime(1500000000))) #结果: 'Fri Jul 14 10:40:00 2017' print(time.asctime()) #结果:'Mon Jul 24 15:18:33 2017' #时间戳 --> %a %d %d %H:%M:%S %Y串 #time.ctime(时间戳) 如果不传参数,直接返回当前时间的格式化串 print(time.ctime()) #结果:'Mon Jul 24 15:19:07 2017' print(time.ctime(1500000000)) #结果:'Fri Jul 14 10:40:00 2017'
import time true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S')) time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S')) dif_time=time_now-true_time struct_time=time.gmtime(dif_time) print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1, struct_time.tm_mday-1,struct_time.tm_hour, struct_time.tm_min,struct_time.tm_sec)) #结果: 过去了0年0月1天2小时30分钟0秒
(三)random模块
import random # 随机小数 print(random.random()) # 大于0且小于1之间的小数 #结果: 0.7664338663654585 print(random.uniform(1,3)) #大于1小于3的小数 #结果: 1.6270147180533838 #随机整数 print(random.randint(1,5)) # 大于等于1且小于等于5之间的整数 #结果: 2 print(random.randrange(1,10,2)) # 大于等于1且小于10之间的奇数 #结果:5 #随机选择一个返回 print(random.choice([1,'23',[4,5]])) # #1或者23或者[4,5] #结果: 23 #随机选择多个返回,返回的个数为函数的第二个参数 print(random.sample([1,'23',[4,5]],2)) # #列表元素任意2个组合 #结果: [[4, 5], '23'] #打乱列表顺序 item=[1,3,5,7,9] random.shuffle(item) # 打乱次序 print(item) #结果:[5, 1, 3, 7, 9] random.shuffle(item) print(item) #结果:[5, 9, 7, 1, 3]
练习:生成随机验证码
import random def v_code(): code = '' for i in range(5): num = random.randint(0,9) alf = chr(random.randint(65,90)) add = random.choice([num,alf]) code = "".join([code,str(add)]) return code print(v_code()) #结果:12IU4